{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

set3 - Energy eigenvalues For a par1cle in a ring we have...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Energy’ eigenvalues’ For’a’par1cle’in’a’ring’we’have’ ±’ d 2 d φ 2 ψφ ( ) = 2 IE 2 ( ) = k 2 ( ) But from the boundary condition k is a whole number E = 2 k 2 2 I k = 0,1,2,3,. . with a wavefunction (eigenfunction) ( ) = A sin k + δ ( ) where A and are determined from the boundary condition We define a node of function as a position in which the eignefnction becomes zero. How can we determine the number of nodes for a particle in a ring?
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Nodes’for’a’par1cle’in’a’ring’ 2’ 0’ 2π’ Sin( ϕ )’ 0’ 2π’ Sin(2 ϕ )=0’ ϕ =0,90,±80,270’ Sin( ϕ )=0’ ϕ =0,±80’
Background image of page 2
Number’of’nodes’ vs’Energy’ In’one’dimensional’system’the’number’of’ nodes’is’growing’monotonically’with’energy.’ The’more’nodes’we’have’the’higher’is’the’ energy.’ The’nodes’are’simple’qualita1ve’measure’of’ the’energy’of’an’ eignefunc1on.’The’more’ nodes’the’ eigenfunc1on’has’the’more’ energe1c’it’is’likely’to’be.’ 3’
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Angular’momentum’ The’Hamiltonian’is’the’operator’of’energy.’The’ energy’is’quantum’mechanics’is’discrete.’ When’we’discussed’the’Bohr’model’we’also’ men1oned’that’the’angular’momentum’ obtained’discrete’values’too’ What’is’the’quantum’mechanics’operator’for’ angular’momentum?’ 4’ J = n J = i ∂φ
Background image of page 4
The’ wavefucn1on’needs’to’be’an’ eigenfunc1on’
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 18

set3 - Energy eigenvalues For a par1cle in a ring we have...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online