ECE340_L8_S14_Distribution

# kt 2m 2 2 32 1 e e f kt 2 m 2 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: `ple valleys due to symmetry and energy degeneracy –  This is included in the density of states eﬀec2ve mass http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Ge/Figs/221.gif 13 Carrier Concentra`on at Thermal Equilibrium The Fermi Function Multiplied by the Density of States ∞ n0 = ∫ f ( E ) N c ( E ) dE Ec p0 = ∫ ⎡1 − f ( E ) ⎤ N v ( E ) dE ⎦ −∞ ⎣ Ev DOS: Appendix IV 15 Electron Concentra`on no in a n- type Semiconductor at Equilibrium no(K)=Nd, majority carrier Ec Ef eee e ∞ no = ee e Ec e Ed Ei Ev e e ee e ee ee e e no = N c ( Ec ) • f ( Ec ) f ( E ) = Fermi Distribution Funtion N ( E ) = Density of States (cm -3 ) N c ( Ec ) = Effective Density of States (located at conduction band edge) e e f ( Ec ) = po(K)=ni2/no, minority carrier ∞ no = ∞ ∫ f ( E ) • N (E )dE = ∫ 1 + e Ec ∞ ∫e Ec Ec − ( E − E f )/ kT • 2⎛m ⎞ π 2 ⎜ 2 ⎟ ⎝⎠ * 3/2 1 ( E − E f )/ kT 2 ⎛ m* ⎞ • 2⎜ 2⎟ π ⎝ ⎠ 3/2 ⎛ 2π m kT ⎞ E 1/2 dE = 2 ⎜ ⎟ ⎝h ⎠ = N C (T ) e( EF − EC )/kT = N C (T ) e−( EC − EF )/kT * n 2 ∫ f ( E ) • N (E )dE 1/2 E dE 3/2 e( EF − EC )/kT f ( Ec ) = e 1 1+ e − ( Ec − E f )/ kT ( Ec − E f )/ kT if e ( Ec − E f )/ kT ⎛ 2π • m kT ⎞ N c ( Ec ) = 2 ⎜ ⎟ h2 ⎝ ⎠...
View Full Document

## This note was uploaded on 03/06/2014 for the course ECE 340 taught by Professor Leburton during the Spring '11 term at University of Illinois, Urbana Champaign.

Ask a homework question - tutors are online