Pdf 15 d divsalar s dolinar f pollara rj mceliece

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 95): 29-39. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-120/120D.pdf> [15] D. Divsalar, S. Dolinar, F. Pollara, R.J. McEliece. “Transfer Function Bounds on the Performance of Turbo Codes.” TDA Progress Report 42-122, April-June 1995 (August 15, 1995): 44-55. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-122/122A.pdf> [16] S. Dolinar, D. Divsalar, and F. Pollara . “Code Performance as a Function of Block Size.” TMO Progress Report 42-133, January-March 1998 (May 15, 1998): 1-23. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-133/133K.pdf > [17] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo codes." Proceedings of IEEE International Conference on Communications, 1064-1070. Geneva: IEEE, 1993. [18] S. Benedetto et al. “Soft-Output Decoding Algorithms in Iterative Decoding of Turbo Codes.” TDA Progress Report 42-124, October-December 1995 (February 15, 1996): 63-87. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-124/124G.pdf> [19] S. Benedetto et al. “A Soft-Input Soft-Output Maximum A Posteriori (MAP) Module to Decode Parallel and Serial Concatenated Codes.” TDA Progress Report 42-127, JulySeptember 1996 (November 15, 1996): 1-20. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-127/127H.pdf> [20] J. Hamkins and D. Divsalar. “Coupled Receiver-Decoders for Low Rate Turbo Codes.” Proceedings of IEEE Inernational Symposium on Information Theory, 381– 381. Geneva: IEEE, 2003. [21] A. J. Viterbi and J. K. Omura. Principles of Digital Communication and Coding. New York: McGraw-Hill, 1979. [22] I. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields.” SIAM Journal on Applied Mathematics 8 no. 2: 300-304. CCSDS 130.1-G-1 Page 1-3 June 2006 TM SYNCHRONIZATION AND CHANNEL CODING —SUMMARY OF CONCEPT AND RATIONALE [23] R. J. McEliece and L. Swanson. “On the Decoder Error Probability for Reed-Solomon Codes.” TDA Progress Report 42-84, October-December 1985 (February 15, 1986): 66-72. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-84/84F.PDF> [24] R. J. McEliece. “The Decoding of Reed-Solomon Codes.” TDA Progress Report 4295, July-September 1988 (November 15, 1988): 153-157. <http://tmo.jpl.nasa.gov/tmo/progress_report/42-95/95O.PDF> [25] G. D. Forney, Jr.. “The Viterbi algorithm.” Proceedings of the IEEE 61 (1973): 268278. [26] G. D. Forney, Jr. Concatenated Codes. Cambridge: MIT Press, 1966. [27] R. L. Miller, L. J. Deutsch, and S. A. Butman. On the Error Statistics of Viterbi Decoding and the Performance of Concatenated Codes. JPL Publication 81-9. Pasadena, California: Jet Propulsion Laboratory, September 1, 1981. [28] K.-M. Cheung and S. J. Dolinar, Jr. “Performance of Galileo’s Concatenated Codes With Nonideal Interleaving.” TDA Progress Report 42-95, July-September 1988 (November 15, 1988): 148-152. <http://tmo.jpl.nasa.gov/tmo/progress_report/4295/95N.PDF> [29] D. Divsalar. “A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes.” TMO Progress Report 42-139, July-September 1999 (November 15, 1999): 1-35. <http://tmo.jpl.nasa.gov/tmo/progress_report/42139/139L.pdf> [30] R. Garello, P. Pierleoni, and S. Benedetto. “Computing the Free Distance of Turbo Codes and Serially Concatenated Codes with Interleavers: Algorithms and Applications.” Journal on Selected Areas in Communications 19, no. 5 (May 2001): 800-812. [31] L. Deutsch, F. Pollara, and L. Swanson. “Effects of NRZ-M Modulation on Convolutional Codes Performance.” TDA Progress Report 42-77, January-March 1984 (May 15, 1984): 33-40. <http://tmo.jpl.nasa.gov/tmo/progress_report/4277/77E.PDF> [32] Gian Paolo Calzolari, et al. “Turbo Code Applications on Telemetry and Deep Space Communications.” In Turbo Code Applications: A Journey from a Paper to Realization, edited by Keattisak Sripimanwat, 321-344. Dordrecht: Springer, 2005. The latest issues of CCSDS documents may be obtained from the CCSDS Secretariat at the address indicated on page i. CCSDS 130.1-G-1 Page 1-4 June 2006 TM SYNCHRONIZATION AND CHANNEL CODING —SUMMARY OF CONCEPT AND RATIONALE 2 2.1 OVERVIEW OF CCSDS TELEMETRY SYSTEM INTRODUCTION The purpose of a telemetry system is to reliably and transparently convey measurement information from a remotely located data generating source to users located in space or on Earth. Typically, data generators are scientific sensors, science housekeeping sensors, engineering sensors and other subsystems on-board a spacecraft. The advent of capable microprocessor based hardware will result in data systems with demands for greater throughput and a requirement for corresponding increases in spacecraft autonomy and mission complexity. These facts, along with the current technical and fiscal environments, create a need for greater telemetering capability and efficiency with reduced costs. In the past, most of the telemetry resources used by a science mission have been wholly contained within a cognizant Project office and, with the exception of the tracki...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online