PHYS 408 HOMEWORK 9 SOLUTIONS

PHYS 408 HOMEWORK 9 SOLUTIONS

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: left structure add large transparent square x = -D/2 - L/2 to y = -L/2 to +L/2 -D/2 + L/2 subtract small opaque square x = -D/2 - l/2 to -D/2 + l/2 y = -l/2 to +l/2 right structure add large transparent square x = +D/2 - L/2 to y = -L/2 to +L/2 +D/2 + L/2 subtract small opaque square x = +D/2 - l/2 to +D/2 + l/2 y = -l/2 to +l/2 5 The fourier transform is of the input image is: F {f (x, y )} = = ￿ ￿ dx ￿ dy f (x, y )e−i(kx x+ky y) −D/2+L/2 dx −D/2−L/2 + ￿ ￿ +L/2 −L/2 +D/2+L/2 dx +D/2−L/2 − ￿ = E0 dy E0 e−i(kx x+ky y) (12) ￿ (13) −D/2+￿/2 +L/2 −L/2 dx −D/2−￿/2 − ￿ ￿ (11) ￿ +D/2+￿/2 dy E0 e−i(kx x+ky y) +￿/2 −￿/2 dx +D/2−￿/2 ￿ dy E0 e−i(kx x+ky y) +￿/2 dy E0 e−i(kx x+ky y) −￿/2 ￿−D/2+L/2 ￿ ￿+L/2 1 −ikx x 1 −iky y e e −ikx −iky −D/2−L/2 −L/2 ￿ ￿+D/2+L/2 ￿ ￿+L/2 1 −ikx x 1 −iky y +E0 e e −ikx −iky +D/2−L/2 −L/2 ￿ ￿−D/2+￿/2 ￿ ￿+￿/2 1 −ikx x 1 −iky y −E0 e e −ikx −iky −D/2−￿/2 −￿/2 ￿ ￿+D/2+￿/2 ￿ ￿+￿/2 1 −ikx x 1 −iky y −E0 e e −ikx −iky +D/2−￿/2 −￿/2 = E0 L e 2 +ikx D/2 sinc(kx L/2)sinc(ky L/2) +E0 L e 2 −ikx D/2 −E0 ￿ e sinc(kx ￿/2)sinc(ky ￿/2) 2 −ikx D/2 −E0 ￿ e = 2E0 cos(kx D/2) ￿ (15) (16) (17) (18) (19) (20) (21) (22) sinc(kx L/2)sinc(ky L/2) 2 +ikx D/2 (14) sinc(kx ￿/2)sinc(ky ￿/2) ￿ 2 2 L sinc(kx L/2)sinc(ky L/2) − ￿ sinc(kx ￿/2)sinc(ky ￿/2) (23) (24) (25) (26) (27) Evaluate at ￿ ⊥ = (k/d)￿ ⊥ = (2π /λd)￿ ⊥ to calculate the quantity the Fraunhofer far-field is proportional to: k x x g (x, y ) ∝ 2E0 cos(π xD/λ) ￿ ￿ L sinc(π xL/λ)sinc(π yL/λ) − ￿ sinc(π x￿/λ)sinc(π y ￿/λ) 2 2 (28) The far-field intensity is proportional to |g (x, y )|2 , which is plotted below. As for validity of the Fraunhofer approximation, the input image is confined to a circle of radius squared ((L + D)2 + (L)2 )/4, thus the Fresnel number for the input image is (L + D)2 + (L)2 /λd, for an output image a distance d away from the input image. Thus we need d￿ (L + D)2 + (L)2 = 417 m 4λ (29) And – although not asked in the problem – we would need to make sure the Fresnel number for the output pattern of interest satisfies the Fraunhofer approximation for a given input-output distance. As can be seen in the plot of the image, the “interesting stuff ” can be seen within a radius of approximately 3 tenths of a mm from the center of the pattern and, at a distance of 104 meters, the corresponding Fresnel number 3 · 10−4 /(6 · 10−7 · 104 ) = 5 · 10−2 satisfies the Fraunhofer approximation. 6 3.1 field, interpreted contour Figure 1: p3a.jpg 7 3.2 intensity, interpreted contour Figure 2: p3b.jpg 8 3.3 intensity, 3D Figure 3: p3c.jpg 9 3.4 scripts 3.4.1 p3.m smax = 3e-4; N = 1e3; s = linspace(-smax,smax,N); scale = 1e-3; % mm pcolor(s/scale,s/scale,g(s,s)); shading interp xlabel(’x, mm’) ylabel(’y, mm’) title(’g(x,y)’) saveas(gcf,’p3a.jpg’); pcolor(s/scale,s/scale,abs(g(s,s)).^2); shading interp xlabel(’x, mm’) ylabel(’y, mm’) title(’|g(x,y)|^{2}’) saveas(gcf,’p3b.jpg’); meshz(s/scale,s/scale,abs(g(s,s)).^2); shading interp xlabel(’x, mm’) ylabel(’y, mm’) title(’|g(x,y)|^{2}’) saveas(gcf,’p3c.jpg’); 3.4.2 g.m function g = g(x,y) D = 2e-2; L = 1e-2; ell = 2e-3; lambda = 600e-9; g = (L^2)*( cos(pi*x’*D/(2*lambda)).*sinc(x’*L/(2*lambda)) )*sinc(y*L/(2*lambda)) ... - (ell^2)*( cos(pi*x’*D/(2*lambda)).*sinc(x’*ell/(2*lambda)) )*sinc(y*ell/(2*lambda)); g = g’; 10...
View Full Document

This document was uploaded on 03/11/2014 for the course PHYS 408 at University of British Columbia.

Ask a homework question - tutors are online