PHYS 408 HOMEWORK 6 SOLUTIONS

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 9 9 9 9 10 10 10 10 10 10 11 11 11 12 12 1 Ronchi Ruling 1.1 calculate Fourier decomposition Let E0 (x) = E0 f (x) with 1 f (x) = 0 Fourier decompose f (x): f (x) = +∞ ￿ b b (4n − 1) 2 < x < (4n + 1) 2 (1) b b (4n + 1) 2 < x < (4n − 3) 2 kn = cn eikn x n=−∞ 2π n πn = 2b b (2) Integrate over one period using the piecewise form of f (x): ￿ +b dx e−ikm x f (x) = −b ￿ +b/2 −b/2 dx e−ikm x · 1 = b · sinc(π m/2) (3) Integrate over one period using the Fourier decomposition of f (x): ￿ +b −b dx e−ikm x f (x) = cm · 2b (4) sinc(π m/2) 2 (5) Thus cm = and +∞ ￿ sinc(π m/2) E0 (x) = E0 eikn x 2 n=−∞ ￿ ￿ +...
View Full Document

This document was uploaded on 03/11/2014 for the course PHYS 408 at University of British Columbia.

Ask a homework question - tutors are online