PHYS 408 HOMEWORK 6 SOLUTIONS

PHYS 408 HOMEWORK 6 SOLUTIONS - solution set 6 Contents 1 2...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
solution set 6 November 15, 2009 Contents 1 Ronchi Ruling ................................................... 2 1.1 calculate Fourier decomposition ................................... 2 1.2 plot Fourier decomposition coefficients ............................... 3 2 Another Fourier decomposition ......................................... 4 2.1 Outright calculation 4 2.2 Identify expansion in list ...................................... 4 2.3 Shortcuts ............................................... 4 3 Fourier transform, square pulse 5 3.1 Outright calculation and plot of transform ............................ 5 4 Shifting a Fourier transform ........................................... 6 4.1 inverse Fourier transform of delta functions 6 4.2 k -space shifting ............................................ 6 5 Fourier transform of a gaussian 7 5.1 the transform ............................................. 7 5.2 direct and inverse space widths 7 6 matching functions and their fourier transforms ................................ 7 6.1 Matching 7 6.2 reasoning 7 7 Convolution of rectangular functions 8 8 copy and paste convolution 9 8.1 function, single delta function .................................... 9 8.2 function, two delta functions 9 8.3 function, in±nity of delta functions ................................. 9 9 Convolution theorem 10 10 fourier optics, transfer functions, plane waves 10 10.1 single-wavevector wave ....................................... 10 10.2 multi-wavevector wave ........................................ 10 10.3 explanation .............................................. 10 11 free-space propagation 10 11.1 three plane waves .......................................... 11 11.2 single plane wave 11 11.3 delta-function slit, x -axis 11 11.4 two delta-function slits, relative phase di²erence ......................... 12 11.5 delta-function slit along y = αx 12 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1 Ronchi Ruling 1.1 calculate Fourier decomposition Let E 0 ( x )= E 0 f ( x )w ith f ( x 1( 4 n 1) b 2 <x< (4 n + 1) b 2 0( 4 n + 1) b 2 (4 n 3) b 2 (1) Fourier decompose f ( x ): f ( x + ° n = −∞ c n e ik n x k n = 2 πn 2 b = b (2) Integrate over one period using the piecewise form of f ( x ): ± + b b dx e ik m x f ( x ± + b/ 2 b/ 2 dx e ik m x · 1= b · sinc( πm/ 2) (3) Integrate over one period using the Fourier decomposition of f ( x ): ± + b b dx e ik m x f ( x c m · 2 b (4) Thus c m = sinc( πm/ 2) 2 (5) and E 0 ( x E 0 + ° n = −∞ sinc( πm/ 2) 2 e ik n x (6) = E 0 ² 1 2 + + ° n =1 sinc( πm/ 2) cos( ik n x ) ³ k n = b (7) 2
Background image of page 2
1.2 plot Fourier decomposition coefficients Figure 1: p1.jpg 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2 Another Fourier decomposition 2.1 Outright calculation Assume period of 2 T and later adjust T as needed. f ( x )= 2( 2 n ) T<x< (2 n + 1) T 0( 2 n + 1) (2 n + 2) T (8) Fourier decompose f ( x ): f ( x + ° n = −∞ c n e ik n x k n = 2 πn 2 T = T (9) Integrate over one period using the piecewise form of f ( x ): ± 2 T 0 dx e ik m x f ( x ± T 0 dx e ik m x · 2=2 T · e ik m T/ 2 sinc( k m 2) (10) Integrate over one period using the Fourier decomposition of f ( x ): ± 2 T 0 dx e ik m x f ( x c m · 2 T (11) Thus c m = e ik m 2 sinc( k m 2) (12) and f ( x + ° n = −∞ ² e ik n 2 sinc( k n 2) ³ e ik n x (13) =1+ ° | n | odd ² e ik n 2 sinc( k n 2) ³ e ik n x (14) 2 ° n odd cos( k n x k n 2)sinc( k n 2) (15) 4 π ° n odd sin( k n x ) n k n = T (16) For T = 1, f ( x )=1 + 4 π ° n odd sin( nπx ) n (17) 2.2 Identify expansion in list (c) 2.3 Shortcuts f ( x ) takes the form of 1 plus an odd function, so we would expect the odd function part to consist of only sine functions, as cosine function are even whilst sine functions are odd. Some of the algebra needed above would thus be avoided by starting out with a fourier decomposition in terms of 1 plus a sum over all possible sine functions.
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 12

PHYS 408 HOMEWORK 6 SOLUTIONS - solution set 6 Contents 1 2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online