Solutions-166E2-S01

Solutions-166E2-S01 - MA 166 EXAM 2 Spring 2001 Page 1/4...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 166 EXAM 2 Spring 2001 Page 1/4 STUDENT ID RECITATION INSTRUCTOR RECITATION TIME DIRECTIONS 1. Write your name, student ID number, recitation instructor’s name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4. . The test has four (4) pages, including this one. . Write your answers in the boxes provided. . You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit. . Credit for each problem is given in parentheses in the left hand margin. 6. No books, notes or calculators may be used on this test. “>005? U! Evaluate the integrals in problems 1—5. (6) 1. /tan2:z:da: :: ffizczx €91) (1.x NC @ E1 {n+1 » No muffin».an / $3+$d$ ,i :V Xf'i «1: _;A_. +- E-xg—mé C‘CCcLit wafiygmd x3+>< x (fin) X 5‘ +1 190‘“? 4" C99 C73 Mfume; m X +L -: AXZ+A +BXZ+CX “womb Aura-:0 C:l. Azi (3;..L S le :1 + Ex +03“ :firmgi... +4.04), x2“. x W“ x2+1 :J/nlxl -—— éQmflxZ+L> +3tamui>< +vC ‘1 M fav- wash/00 +C (om. t£m€L «Ova»? £0?“ test) -1 {nor rwx'sm'vva Ax ’ dun) (our. ’Cim, <2ng ‘Lmv haggl‘ rmlolem) C73 @ @ lexl ~%h(><ai)+tarwix +C. i: MA 166 Exam 2 Spring 2001 Name ___________ Page 2/4 © <—- opt); for Fleim qua» Wrong V (12) 3- /:v3\/1+x2d:c : ftqnaeaecfew: m X: tome OLX:SCczedfi ' 441 ~x m N on Th. Sufish‘tuimv; My :SCCG url-F‘x ‘ ' will 0:759 WorLL 2f townie Stanza:- metmew ,Lwr W [m6 m = {($9.36 ~1) 3.236 ametmaw _ zjtwmujz.) ( U» :: MCG’ de: Sicgtan6&9 ‘3 3 U LL? C secs 3 2......__. ': ~____s<zce S 3 + 5* ,5 +C :32. '1+x“5’/‘__g, 2.3/1 _ 3rd” (yummy?th 5( ) «5(L+X) +C m femeQQ: (a awed“. .150”th » awry”: .15 C (g @ (12) 4. /\/1—4$2d:c :2: CJO$29 dB , gqme qmfiQng ruler 2.x ZX=9WG dung—026cm M ,w. [avobtem 3, 1_4X"L 1'4X1 =CQge’ (’L+ 003299433 : £86429) «PC 3% (9 +$imems® +C ’- Lgtal‘fithX) + Qx‘{1,-4>x""] +C : 4+" @ a BM}: 4 anw 1 wepenmm a a o N, .1. <5x‘n‘ 2x 14631th + w in unwed} ’ 4' ( )+ 2 } (6) 5. /:cos3acda: -_—_ _.${Y11x)CJOSxoLx : convergent. Imgortant: Show clearly how limits are involved. 00 (a) /0 ate—32m: :: rtXEP'chleCa face 0 a 1— /. 1 3.19"" 3‘", 1,63 “‘4” [~:€‘*l=bm (“fie * )-—~~«:~: o 1”” ? La. 3 1 . 3 7 '““ (b) dz: 1: m I ’l. AFC r—eo m _ 1 t —-> if t Xvi 0L“ ® g; p MA 166 Exam 2 Spring 2001 Name _____________ Page 3/4 (12) 6. Determine Whether each integral is convergent or divergent. Find its value if it is 72., , W g {1: =L‘m Wallis-755??? WW =°° T _ OLjumaAA/JCD (10) 7. Find the length ofthe curvey=%(m2+2)%,0§a:§l. :1. :2 \l (ll-9. ’2' ’ L. f0 +(Cbx) (ELM . '2, '2, ‘A 7’ L 2 we) +ew 2x>=4+><<w> : L )( x43? 2X1: LL%XZ)L L :— XLVO—Hzlz £le :: §1(l+><l)dh< G5) 0 a .. X3 ' l ’51-. “Xi‘g [Cpl-tirrgé) fig— E) S (8) 8. Set up an integral for the area %of the surface obtained by rotating the curve 3; = Inst, 1 _<_ cc 3 2, about the cc-axis. Do not evaluate the integral. ~ A MA 166 Exam 2 Spring 2001 Name m Page 4/4 (12) 9. Consider the lamina bounded by the curves y = 332, y = 0, a: = 1, and with density p = 1. Find the following: (a) The mass m of the lamina. 4 11 1 _ 7, x i, :3. C29. “film-tale 3 m k 4' (b) The moment My of the lamina about the y-axis. i 4» I 2. x,4r_...l— _L €53 w,- xx.<ly=....],~ M__——- M% J0 4" 4 y 4’ NPL (c) The moment Mm of the lamina about the m-axis. 1 2 5'1 ‘ M =§Xix1dx:——X) =3; " .3 10 o 10 N PC ((1) The center of mass (is, g) of the lamina. ’1 . X a. ‘3‘ m «‘2‘: ~10 mnsistent ‘3 «\WM above (3Q 10.‘ Determine Whether the sequence converges or diverges. If it converges, find the limit. [10) (You need not show work for this problem). (a) an = cos mr '1,1,-—1,1;il..,, _ «a (b) an‘1+n ' bum (—x‘ :1le i... X690 114% X—MM .1. x ...
View Full Document

Page1 / 4

Solutions-166E2-S01 - MA 166 EXAM 2 Spring 2001 Page 1/4...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online