lecture notes9

# p q r conjunc1venormalform op1onal

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: n: Let p and q be the statements that A is a knight and B is a  knight, respectively. So, then ¬p represents the proposition that A is a  knave and ¬q that B is a knave.    If A is a knight, then p  is  true. Since knights tell the truth, q must also be  true. Then (p ∧ ¬ q)∨ (¬ p ∧ q) would have to be true, but it is not. So, A is  not a knight and therefore ¬p must be true.    If A is a knave, then B must not be a knight since knaves always lie. So,  then both ¬p and ¬q hold since both are knaves.  Logic Circuits   (Studied in depth in Chapter 12)    Electronic circuits; each input/output signal  can be viewed as a 0 or 1.     0    represents False    1    represents True    Complicated circuits are constructed from three basic circuits ca...
View Full Document

## This document was uploaded on 03/06/2014 for the course MATH 320 at CSU Northridge.

Ask a homework question - tutors are online