lecture notes9

# Thediagnosticmessageisnotstoredinthebuer

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ondition for my not going to  town.”      Solution:   converse: If I do not go to town, then it is  raining.  inverse:  If it is not raining, then I will go to town.  contrapositive: If I go to town, then it is not raining.   Bicondi1onal    If p  and q  are propositions, then  we can form the biconditional  proposition p ↔q , read as “p  if and only if q .” The  biconditional           p ↔q  denotes the proposition with this truth table:  p  q  p ↔q   T  T  T  T  F  F  F  T  F  F  F  T     If p  denotes “I am at home.” and q   denotes “It is raining.”  then       p ↔q   denotes “I am at home if and only if it is  raining.”  Expressing the Bicondi1onal    Some alternat...
View Full Document

## This document was uploaded on 03/06/2014 for the course MATH 320 at CSU Northridge.

Ask a homework question - tutors are online