# 39 dr e dl poantb nlh lii cirdrfrn de lai dl let c dt

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: face bounding volume τ. S ˆ ∫ C A • dl = ∫ (∇ × A) • n dA R= S ˆ ∫ E• n dA = Qenc / ε0 ∫ C E • dl =0 Stoke’s theorem: C is a closed curve bounding surface S. statics only B • n dA = 0 ∫ ˆ ∫ C B • dl =µ0 I enc N Φ B = Li statics only ε = − L di ε = − d Φ B dt dt Full Maxwell equations: Differential form ε0µ0 = 1 / c 2 ∇ • E = ρ / ε0 ∇•B = 0 ∂B ∇×E+ =0 ∂t 1 ∂E ∇×B− 2 = µ0 J c ∂t Full Maxwell equations: Integral form ˆ ∫ E • n dA = Qenc / ε0 ˆ ∫ B • n dA = 0 Figrr. Φ 3.9 dR E • dl = −poant!B nlh. l€ii cird€r€F!!€rn dE lai d.l ∫ Let C dt a oossibl€ oondinateim6 th.t obs€wll! in in.nial c t ftamesmovingat va.iousdiftelent velociti.s might ∂E meagllt ctvr entvro g €n event!. t€r f € + ∫ε n ∫ C B • dl =µ0 Icirdbµr0 pr€€50€ntldhoiv•€nˆod.A posiu€,oints in thim.s .ight €€ proper t t . f ll S €ent €sama6v resent me.sulEdbalwbut mhovingb€tw€n6tby cloct! palong st both t vcnt! e €€n ha cvantt r '(t ') = r (t ) − βd iff €rent oddlines. h6s inglap ointi n c ommon \$ T vadous sets b€− € v '(t ') = v (t ) tveβn tthe!6Gnrr is \$e spacstimeintcrvalA5 ho d b€t\$€en Newtonian relativity a '(t ') = a (t ) Three kinds of time Cood|t. Ttt|. ?rop..Ift|. Th. tirP b€twen two Th€rime betwccn two .vmt6 m€asurEdin an irEri.l rEturrr? fi|me W a Fir of sy,ttuonird clocls, onc pr€l€llt at eadr ev€nt (It botl' cv€nts haPFn to (rc1lr Mnitidl Convarion l lyElbol ind€Fndcnt? GeodErrL.h.l%y sg.c.rf!. The tirE betw..n lwo €vgrts r! dE rutsd by .n ir€rtirl cLoclprtr.nt at bodr cv€rt& (8ec.u!a m instial docf fol,ows. uniqu€ worldline bctweelrthc ever*s, the spacetim€ lnlcrval'! value b uniquefor . Cv6r pai! of by . si\$l€ cl,ocr p!.!srt at Mr 6Ert!. (ltt v.luc dq6d3 dr th€worldlim th.t lh€ clockfollows in tctdry ftorn oll€ €vctrtto dE otlE .) 3ingk docl suffc€s.)' AI No Worri AlErudrdy, th. @diMb 2 tr o,2tlEdEt 2 uiit <lddi tift dituEE 2 t2 r&r !.rH, E Distanae Pathlenttt Spatiaf coodimte b.ts6 2 two.e.it! Δs = Δt − Δd = Δt − Δx − Δy − Δz 2 mi8ht b. i.H Ad llExGrErt'ddErprrd!. metric equation: invariant spacetime interval tB by definition. So drc spacetimenierval befipee{r 2 i is a specirl case h ΔτaAptDFr time−rd 2 sp€cialcaseofAa c= 1 − vroΔeventsigu.lERtant) 1 d v a dt Δτ B rrodinate timeAs€ef cons 3.9). t ( B (v of B = tA TablesR3.1and R3.2summarizeand organize the ideas pr€send in this chapter.In chapter R4, we will explore the reLtionship betweenthe a coudinaie time 1nd thc spac€timeinErval betweantrvo ev€ntswith the 1 −oI 2 n≈ quatimvc2.fled iE 1 +tdc ≈ 1 + axduptcr R5,we will u5ethe v a e1 − a x help n Euttion.ln 2 link coordiME tinE to metric equalim to PtoFr time. ∫ ( β =v/c γ= 1 1 β 2 ) hb'ld Δt " = γ ( Δt − βΔx ) Δt = γ ( Δt " + βΔx") Δx" = γ (−βΔt + Δx ) Δx = γ (+βΔt " + Δx") Δy" = Δy Δz" = Δz Δy = Δy" Δz = Δz" L = LR / γ v! = x vx − β 1 − β vx vx = v! + β x 1 + β v! x v! = y vy 1 − β 2 1 − β vx vy = v! 1 − β 2 y 1 + β v! x v! = z vz 1 − β 2 1 − β vx v! 1 − β 2 vz = z 1 + β v! x ! # ! Pt , Px , Py , Pz # = %m dt , m dx , m dy , m dz & " \$ " dτ dτ dτ dτ \$ " Pt!% "γ ( Pt − β Px ) % ' \$'\$ \$ Px!' = \$γ (−β Pt + Px )' ' \$ Py!' \$ P ' \$ ' \$y ' \$ Pz!' \$ Pz #&# & E = γm p = γ mv K = E − m m 2 = E 2 − P 2 % "E! % "Ex x \$ ' \$' E ! ' = \$γ ( E y − β Bz )' \$y ' \$E! ' \$ # z & \$γ ( Ez + β By )' # & % " B! % " Bx x \$ ' \$' B! ' = \$γ ( By + β Ez )' \$y ' \$ B! ' \$ # z & \$γ ( Bz − β E y )' # &...
View Full Document

## This document was uploaded on 03/08/2014 for the course PHYS 122 at University of Washington.

Ask a homework question - tutors are online