6 now we arein a pgition to answertheq is thtotal

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ar toRasra rcll dV dM M =V ( # )( # )( + --l-! # + --l-! # ) # + --l-! + --l-! + --l-! rel (All doLtid .x6 dtrrc to thtuth tt .mtd hf th. oN's dr do 'tN.) v v= a= dt dt 2 v a= R uniform circular motion: C9.6 Now we arein a pGition to answertheq is th€total kinetic eneBy of an obiecttha as t r t i o n I l r a n s l a t i o nn d R oa aclling obiect)?t tu.ns out tlEt the o i dv v2 ˆ ˆ a= Now we arein a pGition to answertv −questionraisedin s€ctionC9.li w he r dt R ntonuniforminetic eneBy of an obiectthat is both moving ard rctating (s circular motion: is h€total k asa rclling obiect)?t tu.ns out tlEt the obicrt's total kineticenergyis ius I 1 v x (t ) = ax t + v0 x x (t ) = ax t 2 + v0 x t + x0 2 Ffriction = µ Fnormal 1 Fdrag = C ρ Av 2 2 v!(t ) = v (t ) − β (t ) Galilean velocity transformation a!(t ) = a (t ) − A(t ) Galilean acceleration transformation ma! = −mA + F1 + F2 + … Fictitious forces dA L Kepler’s second law: dt = 2m = constant 4π 2 GM 2 TP roblems a 3 also V = = Nepler’s tS olvino rbit 13.4 O K hird law: GM R 233 TsbleN 13.1 T ableo i u seful uations for solvin orbit Item Definitions of E and L 2E -:Dm Calculation o f e ccentricity e2:,+#GlG) Item Elliptical ase C Hvperbolicc ase 2E GM 2E GM m a m a Connection b etween a a nd E Location o f e xtremes 2GM , and L : r asin| m rr:a(l-e) rg llJ :?J) rr:a(e-\) E: L: Gt?t: M: r: ?: d: a: /c: rl:a(l+e) r/: Other useful relations ,':Hot (Kepler'st hird l aw) tang: J V- :*,(il,r T: 0: t otal s ysteme nergy system angular momentum gravitational constant satellitemass p rimary m ass distancefrom primary satellitespeedat that point angle between i and6 semimaioraxis for ellipse, analogousfor hyperbola f d istance rom p rimary t o closestpoint on the orbit distancefrom primary to farthest point on the orbit o rbital p eriod angle of asymptotes N13.4 Solving rbit Problems O The point of the last sectionis that knowing the values of 2E/m andL/m for a system involving a satellite orbiting a massiveprimary allows us to calculate a and e, which in turn completely specify the shapeof the satellite'sorbit. Table N13.1 summari...
View Full Document

This document was uploaded on 03/08/2014 for the course PHYS 122 at University of Washington.

Ask a homework question - tutors are online