How Do Children Acquire Number Concepts ECI 314 Early Childhood Mathematics

Small numbers up to four or five are perceptual

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: is not a good number to choose to illustrate the logico-mathematical nature of number concepts because two is a perceptual number. Small numbers up to four or five are perceptual numbers, as will be explained shortly. However, two can also be a logico-mathematical number for an adult, who has constructed logico-mathematical numbers. We chose the number two because, with two counters, we could illustrate other relationships such as “similar,” “different,” and “the same in weight.” Children go on to construct logico-mathematical knowledge by putting previously made relationships into relationships. For example, by coordinating the relationships of “same” and “different,” children become able to deduce diat there are more animals in the world than dogs. Likewise, by putting four twos into relationships, they become able to deduce that 2 + 2 + 2 + 2 = 8, that 4x2 = 8, and that if 4x = 8, x must be 2. Piaget thus recognized external and internal sources of knowledge. The source of physical and social knowledge is partly external to the individual. The source of logico-mathematical knowledge, by contrast, is internal. This state­ Theoretical Foundation 6 ment will be clarified shortly when we discuss the two kinds of abstraction dis­ tinguished by Piaget. Let us first review the conservation-of-number task, which will clarify the differences among the three kinds of knowledge. The Conservation-of-Number Task Conservation of number refers to our ability to deduce, through logical rea­ soning, that the quantity of a collection remains the same when its spatial ar­ rangement and empirical appearance are changed. The procedure described below (Inhelder, Sinclair, & Bovet, 1974) may appear rather standardized. However, each interview must be adapted to the particular child, especially with regard to the latter s understanding of the terms used in quantification. Materials: About 40 counters, 20 red ones and 20 blue ones Procedure A. Equality The interviewer makes a row of 8 blue counters and asks the child to put out the same amount of red ones (“as many as,” “the same much,” etc.). The interviewer records the child’s response. If necessary, the red and blue counters are put in one-to-one correspondence, and the child is asked whether the two rows have the same amount. Note: At least 7 counters must be used because small numbers up to 4 or 5 are perceptual numbers. Small collections such as “oo” and “ooo” are called perceptual numbers because they can be dis­ tinguished at a glance. When 7 objects are presented, however, it is impossible to distinguish “ooooooo” from “oooooooo” with cer­ tainty by merely looking at them. Small numbers greater than 4 or 5 are called “elementary numbers.” B. Conservation The interviewer says, “Watch carefully what I’m going to do” and modi­ fies the spatial arrangement in front of the child’s watchful eyes by spac­ ing out the counters in one row and/or pushing them close together in the other row (see Figure 1.1). The following questions are then asked: “Are there as many blue ones as red ones [running his or her finger along each row], or are there more here [indicating one row] or more here [indicating the other row]?” and “How do you know?” C. Countersuggestion If the child has given a correct conservation answer with a logical ex­ planation, the interviewer says, “But another boy [or girl] said there How Do Children Acquire Number Concepts? 7 Figure 1.1. The arrangement of the counters when the question is asked about conservation. are more in this row [indicating the longer row] because this row is longer. What do you think? Are you right, or is the other child right?” If, on the other hand, the child gave an answer of nonconservation, the interviewer reminds him or her of...
View Full Document

This document was uploaded on 03/13/2014.

Ask a homework question - tutors are online