Parameter symbol conditions min typ max units 8 4 d

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0 M H z t o 2 3 4 5 M H z , f L O = 2 0 7 6 M H z , T A = -4 0° C t o + 8 5° C . T y p i c a l v a l u e s a r e a t V C C = VI N A N T = 3 . 3 V , f R F = 2 3 3 8 M H z , T A = + 2 5° C , u n l e s s o t h e rw i s e n o t e d .) ( N o t e 2) In t e rs t a g e (I F ) 2 5 9 M H z S A W f il t e r s p e c i f i c a t i o n : i n s e rt i o n l o s s = 1 9 d B m a x , 9 . 3 M H z t o 1 2 M H z fro m c e n t e r a t t e n u a t i o n = 2 4 d B m i n , b e y o n d 1 2 M H z fr o m c e n t e r a t t e n u a t i o n = 4 0 d B m i n . PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS -8 4 d Bm GENERAL RECEIVER M i n i m u m In p u t R F P o w e r t o P r o d u c e 2 0 m V P - P ( D i f f e r e n t i a l) a t I a n d Q B a s e b a n d O ut p uts P MI N I F A G C is s e t a t m a xim u m g a in , b it H P F = 0 ( N o t e 4) -9 1 M a x i m u m In p u t R F P o w e r t o P r o d u c e 4 0 0 m V P - P ( D i f f e r e n t i a l) a t I a n d Q B a s e b a n d O ut p uts PMAX R F A G C t hr e s h o l d : R F _ A G C _T RIP = -1 7 d B m ; I F A G C i s s e t a t m i n i m u m g a i n , b it HPF = 0 +3 PL K_H L O -r e l a t e d s p uri o u s > 2 G H z -6 6 P L K _L L O -r e l a t e d s p uri o u s < 2 G H z -3 8 NF R F A G C is a t m a xim u m g a in , I F A G C is a t r e f e r e n c e g a in 8.5 In- B a n d In p u t IP 3 ( N o t e s 5 , 6) I_IIP 3 R F A G C is a t m a xim u m g a in , I F A G C is a t r e f e r e n c e g a in -3 2 d Bm O u t- o f- B a n d I n p u t I P 3 ( N o t e s 5 , 7) O _IIP 3 R F A G C is a t m a xim u m g a in , I F A G C is a t r e f e r e n c e g a in -9 d Bm In- B a n d In p u t IP 2 ( N o t e s 5 , 6) I_IIP 2 R F A G C is a t m a xim u m g a in , I F A G C is a t r e f e r e n c e g a in +1 d Bm O u t- o f- B a n d I n p u t I P 2 ( N o t e s 5 , 7) O _IIP 2 R F A G C is a t m a xim u m g a in , I F A G C is a t r e f e r e n c e g a in + 38 d Bm 39 dB L O t o R F In p u t L e a k a g e N o i s e F i g ur e ( N o t e s 3 , 5) O p p o s it e S i d e b a n d R e j e c ti o n O SR B a s e b a n d fr e q u e n c i e s = 1 0 0 k H z ( N o t e 4 ) 32 d Bm d Bm 10.4 dB Im a g e R e j e c ti o n IR e j A t f L O - fI F 54 dB H a lf I F R e j e c ti o n HRej A t f L O + 0 . 5 x fI F 53 dB 30 42 dB -3 7 -3 3 RF AGC LOOP L N A G a in R e d u c tio n RF A G C_ Rang e ( N o t e 4) M i n i m u m R F A G C T ri p P o i n t R F A G C _m i R F A G C T ri p P o i n t R F A G C _i n t B i t s R F 4 / 3 / 2 / 1 / 0 = 0 0 0 1 0 ( B I N ) ( N o t e 4 ) M a x i m u m R F A G C T ri p P o i n t R F A G C _m B it s R F 4/3/2/1/0 = 0 0 0 0 0 ( B I N ) -3 5 B it s R F 4/3/2/1/0 = 1 0 1 0 0 ( B I N ) d Bm -2 9 -1 5 d Bm d Bm FRONT-END (FE) PROGRAMMABLE GAIN F E Pro g r a m m a b l e G a i n R a n g e F E _R g e F E Pro g r a m m a b l e G a i n S t e p F E _S t e p ( N o t e 4) 19 22 26 dB 2 dB IF FILTER INTERFACE I F O u t p u t D iff e r e n ti a l A d m itt a n c e In p u t D if f e r e n ti a l Im p e d a n c e Pr e s e n t e d b y t h e I C t o t h e I F F ilt e r O u t p u t Yout, IF B e t w e e n p i n s I F O U T + , I F O U T-, fI F = 2 5 9 M H z a n d 4 6 7 M H z 1/9 0 0 + j0 S Z in , I F B e t w e e n p i n s I F O U T + , I F O U T-, fI F = 2 5 9 M H z a n d 4 6 7 M H z 150 + j0 Ω _______________________________________________________________________________________ 3 MA X2140 AC ELECTRICAL CHARACTERISTICS 94 CHAPTER 4. RLC NETWORKS, RESONANCE, AND Q 1.0 |H (j ω )| Q=2 Q=10 0.5 0.0 0.1 (a) 1.0 ω /ωo 10.0 Q=2 Q=10 90 70 50 30 arg[H (j ω )] 10 −10 0.1 −30 1.0 10.0 −50 −70 (b) −90 ω /ωo Figure 4.3: (a) Magnitude and (b) phase of the voltage transfer function for Q=2 (solid) and Q=10 (dotted) vs. ω /ωo with a logarithmic frequency axis. 1.0 0.707 Vout1 V2 U=1 V R4 R=50 Ohm C5 C=0.80 pF R3 R=50 Ohm L2 L=3180 nH Vout2 V1 U=1 V R1 R=50 Ohm C1 L1 C=318 pF C3 L=31.8 nH C=159 pF C2 C=318 pF R2 R=50 Ohm Vout3 V3 U=1 V R6 R=50 Ohm C6 C=7.96 pF L3 L=31.80 nH ac simulation AC1 Type=lin Start=10 MHz Stop=1 GHz Points=1901 C8 C=65 pF C7 C=7.96 pF R5 R=50 Ohm 0.5 0.4 0.3 0.2 0.1 0 8e7 8.5e7 9e7 9.5e7 1e8 1.05e8 acfrequency acfrequency acfrequency 1.1e8 1.15e8 1.2e8 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1e7 1e8 acfrequency acfrequency acfrequency 1e9 Optimum Frequencies for Amidon Toroidal Inductor Cores TYPI CAL 'Q' CURVES Various windings, same core diagram of a simple feedback system is shown in Figure 5.1. B Vi Σ A Vo Figure 5.1: A simple feedback system The o tltage nsfer fun fu n for th s sy this s The vvloage tratransferctionction ifor stem isystem is As VoVo = A((j)ω ) V= 11 −A(sωB ((j) ) Vi i − A(j ) )B s ω (5.1) where the quantity Alo (ω ) = A(j ω )B (j ω ) is called the open loop gain of the system — somwhere sthetequantityp Aais)B (s)subscript d ”the sop eo ino opte thnt ofe thep gain is etimes hor ned to loo g ( n. The is c alle “o is u ed tn l dica gaia th lo o system. Define computed assuming smal l-signal operation of the active devices. Note carefully that the lo op gain is the gain obtained by openi...
View Full Document

Ask a homework question - tutors are online