{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Revision 2010 - Introduction MLE LDV Problems EC220...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Introduction MLE LDV Problems EC220 Revision Lectures Lecture3 Bonsoo Koo May 4, 2010 B KOO EC220 Revision Lectures
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Introduction MLE LDV Problems Today’s Lecture Today: MLE & Limited Dependent Variables Maximum Likelihood Estimation (Chapter 10) Limited Dependent Variables (Chapter 10) B KOO EC220 Revision Lectures
Background image of page 2
Introduction MLE LDV Problems Least Squares Criterion: Ordinary Least Squares Estimation Suppose we have a regression model: Y i = β 1 + β 2 X i + ε i where ε is an iid random variable and all the Gauss Markov assumptions are satisfied. Then the OLS estimator for β is b = argmax β N X i = 1 ( Y i - β 1 - β 2 X i ) 2 B KOO EC220 Revision Lectures
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Introduction MLE LDV Problems Alternative approach: Maximum Likelihood Estimation. We have 3 pieces of information: 1 A sample of observations - ( Y 1 , X 1 ) , ( Y 2 , X 2 ) , · · · , ( Y N , X N ) 2 The model - Y i = β 1 + β 2 X i + ε i 3 A specified pdf for the error - ε i N ( 0 , σ 2 ) What is the density of ε i ? f [ ε i ] = 1 σ 2 π e - 1 2 ( ε i σ ) 2 From this normal density function, f [ Y i | β 1 , β 2 , σ ] = 1 σ 2 π e - 1 2 Y i - β 1 - β 2 X i σ 2 Given independence, Joint density function is f [ Y | β 1 , β 2 , σ ] = n Y i = 1 f [ Y i | β 1 , β 2 , σ ] B KOO EC220 Revision Lectures
Background image of page 4
Introduction MLE LDV Problems Alternative approach: Maximum Likelihood Estimation. We have 3 pieces of information: 1 A sample of observations - ( Y 1 , X 1 ) , ( Y 2 , X 2 ) , · · · , ( Y N , X N ) 2 The model - Y i = β 1 + β 2 X i + ε i 3 A specified pdf for the error - ε i N ( 0 , σ 2 ) What is the density of ε i ? f [ ε i ] = 1 σ 2 π e - 1 2 ( ε i σ ) 2 From this normal density function, f [ Y i | β 1 , β 2 , σ ] = 1 σ 2 π e - 1 2 Y i - β 1 - β 2 X i σ 2 Given independence, Joint density function is f [ Y | β 1 , β 2 , σ ] = n Y i = 1 f [ Y i | β 1 , β 2 , σ ] B KOO EC220 Revision Lectures
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Introduction MLE LDV Problems Alternative approach: Maximum Likelihood Estimation. We have 3 pieces of information: 1 A sample of observations - ( Y 1 , X 1 ) , ( Y 2 , X 2 ) , · · · , ( Y N , X N ) 2 The model - Y i = β 1 + β 2 X i + ε i 3 A specified pdf for the error - ε i N ( 0 , σ 2 ) What is the density of ε i ? f [ ε i ] = 1 σ 2 π e - 1 2 ( ε i σ ) 2 From this normal density function, f [ Y i | β 1 , β 2 , σ ] = 1 σ 2 π e - 1 2 Y i - β 1 - β 2 X i σ 2 Given independence, Joint density function is f [ Y | β 1 , β 2 , σ ] = n Y i = 1 f [ Y i | β 1 , β 2 , σ ] B KOO EC220 Revision Lectures
Background image of page 6
Introduction MLE LDV Problems Alternative approach: Maximum Likelihood Estimation. We have 3 pieces of information: 1 A sample of observations - ( Y 1 , X 1 ) , ( Y 2 , X 2 ) , · · · , ( Y N , X N ) 2 The model - Y i = β 1 + β 2 X i + ε i 3 A specified pdf for the error - ε i N ( 0 , σ 2 ) What is the density of ε i ? f [ ε i ] = 1 σ 2 π e - 1 2 ( ε i σ ) 2 From this normal density function, f [ Y i | β 1 , β 2 , σ ] = 1 σ 2 π e - 1 2 Y i - β 1 - β 2 X i σ 2 Given independence, Joint density function is f [ Y | β 1 , β 2 , σ ] = n Y i = 1 f [ Y i | β 1 , β 2 , σ ] B KOO EC220 Revision Lectures
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Introduction MLE LDV Problems For each ( Y i , X i ) L [ β 1 , β 2 , σ | Y i , X i ] = 1 σ 2 π e - 1 2 Y i - β 1 - β 2 X i σ 2 Therefore, we can get the following likelihood function of jointly obtaining all the observations.
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}