{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture Notes 9 - 6.2 Volumes by Cylindrical Shells Summing...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
6.2 Volumes by Cylindrical Shells ∆g G ± ²³´²µ¶·¸´¸¹²¸ º »¸³¼»½ º ½»³²¾¹¸¿¿ ± 2ÀÁ1  à G Ä Å Á3à G Æ Ã G Ç Ä Å ∆à Summing the volumes of ∆g G of the individual cylindrical shells over the interval [0, 3] gives the Riemann Sum
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
g ∆G ± ² g 2³´µ ± ¶ 1·´3µ ± ¸ µ ± ¹ ·∆µ º ±»¼ º ±»¼ Taking the limit as the thickness ∆µ ½ 0 gives the volume integral G ² lim º½¾ g 2³´µ ± ¶ 1·´3µ ± ¸ µ ± ¹ ·∆µ º ±»¼ ² ¿ 2³´µ ¶ 1·´3µ ¸ µ À ·Áµ À  ² ¿2³´3µ ¹ ¶ 3µ ¸ µ À ¸ µ ¹ ·Áµ À  ² 2³ ¿´2µ ¹ À ·Áµ À  ² 2³ à 2 3 µ À 3 2 µ ¹ ¸ 1 4 µ Ä Å 3 0 ² 45³ 2
Background image of page 2
∆g G ± 2² ³ ´µ¶·´¸¶ ¹º¶»» ·´¼½¾¹ ³ ¹º¶»» º¶½¸º¿ ³ ¿º½ÀÁ¶¹¹ 2² à ÄÀ G Å ÆÇ Ã ÈÄÀ G Ç Ã ∆É G We approximate the volume of the solid S by summing the volumes of the shells swept out by the n rectangles based on P: g Ê Ë ∆g G Ì GÍÎ
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}