56 bibliography 1 m abromowitz and i stegun handbook

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ations. John Wiley and Sons, New York, 1987. 12] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. J. Comput. Appl. Math., 6:19 { 26, 1980. 13] B.L. Ehle. High order a-stable methods for numerical solution of systems of di erential equations. BIT, 8:276{278, 1968. 14] E. Fehlberg. Klassische runge-kutta formeln vierter und niedrigerer ordnung mit schrittweiten-kontrolle und ihre andwendung auf warmeleitungs-probleme. Computing, 6:61{71, 1970. 15] C.W. Gear. Numerical Initial Value Problems in Ordinary Di erential Equations. Prentice Hall, Englewood Cli s, 1971. 16] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Di erential Equations I: Nonsti Problems. Springer-Verlag, Berlin, second edition, 1993. 17] E. Hairer and G. Wanner. Solving Ordinary Di erential Equations II: Sti and Di erential Algebraic Problems. Springer-Verlag, Berlin, 1991. 18] P.C. Hammer and J.W. Hollingsworth. Trapezoidal methods of approximating solutions of di erential equations. Math. Tables Aids Comp., 9:92{96, 1955. 19] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley and Sons, New York, 1966. 20] P.K. Moore and J.E. Flaherty. High-order adaptive nite element-singly implicit runga-kutta methods for parabolic di erential equations. BIT, 33:309{331, 1993. 21] C. Runge. Uber die numerishce au osung von di erentialgleichungen. Math. Ann., 46:167 { 178, 1895. 58...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online