{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# The analysis leading to 9119 cannot be used on this

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tions x i; i i i i G( x)Pr = G( G( i i 1 )r ( 1 ) 2 )r ( 2 ) i if x 1 x < if x<x i (9.1.20) i; i i i as shown in Figure 9.1.3. The error in piecewise constant interpolation is GLy ; GPr = (x ; (x ; i i 1 )(GLy ) ( 1 ) 2 )(GLy ) ( 2 ) 0 0 i i if x 1 x < if x<x : i; i A similar expression applies for GLY ; GPr. Combining these results in the manner used to obtain (9.1.18a) yields e( )= Z i ;1 xi (x ; 1)^( x)dx + g i Z xi (x ; 2)^( x)dx g i 7 2 (x 1 i; x) i (9.1.21a) where x< g( x) = (GLy) ( 1 ) ; (GLY ) ( 1) iif x 1 x < x : ^ (GLy) ( 2 ) ; (GLY ) ( 2) f 0 0 0 i i 0 i i We bound (9.1.21a) as Z je ( )j i xi ;1 (9.1.21b) i; i jx ; 1jjg( x)jdx + ^ Z xi i jx ; 2jjg( x)jdx ^ i or je ( )j h2 kg( )k ^ i 2 (x i1 i i; 1 x ): (9.1.21c) i We'll use the symbol kg( )k with the understanding that the maximum is computed ^ on (x 1 ) ( x ). Finally, substituting (9.1.19a) and (9.1.21c) into (9.1.15) yields i1 i; i h2jjg( ^ je( )j )jj j j1 X N + i or je( )j h2 + j X N i6 i6 1 j; x) j 2 (x 1 j; 1 i x) j j kg( )k = max(kg( )k kg( )k ) ~ ^ ^ 1 2 (x i1 i j h3 ]kg( )k ~ =1 = i where =1 = h3kg( )k 1 kf ( )k...
View Full Document

{[ snackBarMessage ]}