Logistic Regression, Prediction and ROC

# Et fl oe x3 adx1rcvl n 12oo httpsblackboar

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: oded {0, 1 } )”. The second argument is the vector with predicted probability. lbay&quot;eiiain) irr(vrfcto&quot; rcpo(rdtts\$ = &quot;&quot; po.l1otape o.ltcei.etY = 1, rbgm.usml) To get the area under the ROC curve: rcpo(rdtts\$ = &quot;&quot; po.l1otape\$o.o o.ltcei.etY = 1, rbgm.usml)rcvl https://blackboar d.uc.edu/bbcswebdav/pid- 9566224- dt- content- r id- 55868231_2/cour ses/14SS_BANA7046002/notes%284%29.html 7/15 2/17/2014 Log istic Reg r ession, Pr ediction and ROC # # Mdl Ae oe ra pvlebnr.ra .au iomae # 1Mdl 1077 107-6 # oe .58 .7e0 N A We can also compare the glm0 and glm1 on the same graph: po.l0otape&lt; peitcei.l0 cei.et rbgm.usml - rdc(rdtgm, rdtts, tp =&quot;epne) ye rsos&quot; rcpo( =cei.etY= &quot;&quot; pe = o.ltx rdtts\$ = 1, rd cidpo.l0otape po.l1otape, bn(rbgm.usml, rbgm.usml) lgn =TU,lgtx =c&quot;ulMdl,&quot;_,X8 eed RE e.et (Fl oe&quot; X3 _, adX1_&quot;)rcvl n _12)\$o.o https://blackboar d.uc.edu/bbcswebdav/pid- 9566224- dt- content- r id- 55868231_2/cour ses/14SS_BANA7046002/notes%284%29.html 8/15 2/17/2014 Log...
View Full Document

Ask a homework question - tutors are online