Practice Final 1 Part 2

# 38 39 y3y 2 y3whenx 2 solvethedifferentialequation dy

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: te of constant density covering the given region. 34) The region bounded by y = x2 and y = 9 31) 32) 33) 34) 35) The region bounded by y = x4 , x = 4, and the x- axis 35) 36) The region bounded by the x - axis and the curve y = 7sin x, 0 ≤ x ≤ π 36) dy 37) 5y4 = 3x dx 37) dy = 3y dx 38) Solve. 38) 39) yʹ = 3y- 2 ; y = 3 when x = 2 Solve the differential equation. dy 40) cos x + y sin x = sin x cos x dx 41) dy y - = ( ln x)4 dx x 42) x dy = y + (x2 - 3)2 dx 39) 40) 41) 42) dy 43) ex + 3ex y = 2, x > 0 dx 43) 44) y ′ e6x + 6ye6x = 4x 44) Solve the initial value problem. 45) y ′ + y = 2ex; y(0) = 22 46) t dy + 3y = t3 ; t > 0, y(2) = 1 dt 45) 46) 47) θ 48) dy + y = cos θ; θ > 0, y(π) = 1 dθ dy + xy = 3x; y(0) = - 4 dx Solve the differential equation. 49) y′ - y = - xy2 50) - x3 y′ + 2x2 y = y2 47) 48) 49) 50) Answer Key Testname: PF1 1 1 1) - x cot 3x + ln sin 3x + C 3 9 1 1 1 2) - y2 cos 4y + y sin 4y + cos 4y + C 8 32 4 3) 1 2 2x 1 2x 1 2x x e - xe + e + C 2 4 2 4) 46.9 1 5) e 7x + 9 [ 7x...
View Full Document

## This document was uploaded on 03/17/2014 for the course MATH 185 at Orange Coast College.

Ask a homework question - tutors are online