27 to obtain 726 in order to prove conclusion 1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ; V u ; U ; V ) = A(u ; U u ; U ) ; 2A(u ; U V ) + A(V V ): 7.2. Convergence and Optimality 7 Using (7.2.6) A(u ; U u ; U ) = A(u ; U ; V u ; U ; V ) ; A(V V ): Since A(V V ) 0, A(u ; U u ; U ) A(u ; U ; V u ; U ; V ) N 8V 2 S0 : Equality only occurs when V = 0 therefore, U is the unique minimizing function. Remark 2. We proved a similar result for one-dimensional problems in Theorems 2.6.1, 2. Remark 3. Continuity and coercivity did not appear in the proof however, they are needed to establish existence, uniqueness, and completeness. Thus, we never proved that limN !1 U = u. A complete analysis appears in Wait and Mitchell 21], Chapter 6. Remark 4. The strain energy A(v u) not need be symmetric. A proof without this restriction appears in Ciarlet 13]. Corollary 7.2.1. With the assumptions of Theorem 7.2.2, A(u ; U u ; U ) = A(u u) ; A(U U ): (7.2.9) Proof. cf. Problem 3 at the end of this section. In Section 4.6, we obtained a priori estimates of interpolation errors under some mesh uniformit...
View Full Document

This document was uploaded on 03/16/2014 for the course CSCI 6860 at Rensselaer Polytechnic Institute.

Ask a homework question - tutors are online