The exact h 1 errors and e ectivity indices at t 05

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .129(-1) 0.977 0.858(-2) 0.985 0.643(-2) 0.989 2 0.872(-3) 0.995 0.218(-3) 0.999 0.963(-4) 0.999 0.544(-4) 1.000 3 0.278(-4) 0.920 0.348(-5) 0.966 0.103(-5) 0.979 0.436(-6) 0.979 4 0.848(-6) 0.999 0.530(-7) 1.000 0.105(-7) 1.000 0.331(-8) 1.000 Table 7.4.2: Errors and e ectivity indices in H 1 for Example 7.4.3 on N -element uniform meshes with piecewise bi-p polynomial bases. Numbers in parentheses indicate a power of ten. The error estimation procedures (7.4.8) and (7.4.9) use average ux values on @ e . As noted, data for such (local) Neumann problems cannot be prescribed arbitrarily. Let us examine this further by concentrating on (7.4.9) which we write as Ae(V E ) = (V r)e+ < V R >e (7.4.19a) 28 Analysis of the Finite Element Method where the elemental residual r was de ned by (7.4.9b) and the boundary residual is R = (pUn )+ ; (pUn);]: (7.4.19b) The function on @ e was taken as 1=2 to obtain (7.4.9a) however, this may not have been a good idea for reasons suggested in Example 7.4.1. Recall (cf. Section 3.1) th...
View Full Document

Ask a homework question - tutors are online