Users guide 60 siam philadelphia 1980 11 re bank and

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: lliptic Problems. North-Holland, Amsterdam, 1978. 14] C. Johnson. Numerical Solution of Partial Di erential Equations by the Finite Element method. Cambridge, Cambridge, 1987. 15] J. Necas. Les Methods Directes en Theorie des Equations Elliptiques. Masson, Paris, 1967. 16] J.T. Oden. Topics in error estimation. Technical report, Rensselaer Polytechnic Institute, Troy, 1992. Tutorial at the Workshop on Adaptive Methods for Partial Di erential Equations. 17] J.T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann. Toward a universal h-p adaptive nite element strategy, part 2: A posteriori error estimation. Computer Methods in Applied Mechanics and Engineering, 77:113{180, 1989. 18] G. Strang and G. Fix. Analysis of the Finite Element Method. Prentice-Hall, Englewood Cli s, 1973. 19] T. Strouboulis and K.A. Haque. Recent experiences with error estimation and adaptivity, Part I: Review of error estimators for scalar elliptic problems. Computer Methods in Applied Mechanics and Engineering, 97:399{436, 1992. 20] R. Verfurth. A Review of Posteriori Error Estimation and Adaptive MeshRe nement Techniques. Teubner-Wiley, Stuttgart, 1996. 21] R. Wait and A.R. Mitchell. The Finite Element Analysis and Applications. John Wiley and Sons, Chichester, 1985. 22] D.-H. Yu. Asymptotically exact a-posteriori error estimator for elements of bi-even degree. Mathematica Numerica Sinica, 13:89{101, 1991. 23] D.-H. Yu. Asymptotically exact a-posteriori error estimator for elements of bi-odd degree. Mathematica Numerica Sinica, 13:307{314, 1991....
View Full Document

This document was uploaded on 03/16/2014 for the course CSCI 6860 at Rensselaer Polytechnic Institute.

Ask a homework question - tutors are online