Lecture10

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ts (x0 t0), (x0 ; at0 0), and (x0 + at0 0). (Actually, with q being a function of x only, the domain of dependence only involves values of q(x) on the subinterval (x0 ; at0 0) to (x0 + at0 0).) 0 1 10.1. Conservation Laws t 7 P(x 0 ,t 0) 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 dx/dt = a dx/dt = -a 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 11111111111111111111 00000000000000000000 x 0 - at 0 x 0 + at x 0 Figure 10.1.3: The domain of dependence of a point P (x0 t0) for Example 10.1.3 is the triangle connecting the points P , (x0 ; at0 0), and (x0 + at0 0). Transforming back to the physical variables 1 (w + w ) = p w0(x + at) + w0(x ; at)] + 1 Z x+at q( )d 1 u1(x t) = p 1 2 2 2a x;at 2 21 Zx Zx 1 (w ; w ) = p w0(x + at) ; w0(x ; at)] ; 1 1 u2(x t) = p 1 2 q( )d + q( )d ]: 2 2a x+at 2 21 x;at Suppose, for simplicity, that u0(x) = 0, then _ 10 0 u1(x 0) = 0 = p w1 (x) + w2 (x)] 2 10 0 u2(x 0) = au0 (x) = p w1 (x) ; w2 (x)]: x 2 Thus, 0 0 0 p2 w1 (x) = ;w2 (x) = aux(x) and a u0 (x + at) ; u0 (x ; at)] + 1 Z x+at q( )d u1(x t) = 2 x x 2a x;at Zx Zx a u0 (x + at) + u0 (x ; at)] ; 1 u2(x t) = 2 x x 2a x+at q( )d + x;at q( )d ]: Since u2 = aux, we can integrate to nd the solution in the original variables. In order to simplify the manipulations, let's do this with q(x) = 0. In this case, we have u2(x t) = a u0 (x + at) + u0 (x ; at)] x 2x 8 Hyperbolic Problems hence, u(x t) = 1 u0 (x + at) + u0(x ; at)]: 2 The solution for an initial value problem when 8 < x + 1 if ; 1 x 0 0 u (x) = : 1 ; x if 0 x 1 0 otherwise is shown in Figure 10.1.4. The initial data splits into two waves having half the initial amplitude and travel...
View Full Document

This document was uploaded on 03/16/2014 for the course CSCI 6860 at Rensselaer Polytechnic Institute.

Ask a homework question - tutors are online