14 the initial data splits into two waves having half

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ing in the positive and negative x directions with speeds a and ;a, respectively. u(x,0) -1 u(x,1/2a) 1 x u(x,1/a) -1 1 -1 x 1 x u(x,3/2a) 1 x -1 Figure 10.1.4: Solution of Example 10.1.3 at t = 0 (upper left), 1=2a (upper right), 1=a (lower left), and 3=2a (lower right). 10.1.2 Rankine-Hugoniot Conditions For simplicity, let us neglect b(x t u) in (10.1.1a) and consider the integral form of the conservation law d Z udx = ;f (u)j = ;f (u( t)) + f (u( t)) (10.1.10) dt which states that the rate of change of u within the interval x is equal to the change in its ux through the boundaries x = , . If f and u are smooth functions, then (10.1.10) can be written as Z ut + f (u)x]dx = 0: 10.1. Conservation Laws 9 If this result is to hold for all \control volumes" ( ), the integrand must vanish, and, hence, (10.1.1a) and (10.1.10) are equivalent. To further simplify matters, let con ne our attention to the scalar conservation law ut + f (u)x = 0 (u a(u) = dfdu ) and (10.1.11b) ut + a(u)ux = 0: with (10.1.11a) (10.1.11c) The characteristic equation is dx = = a(u): (10.1.12a) dt The scalar equation (10.1.11c) is already in the canonical form (10.1.8a). We calculate the directional derivative on the characteristic as du = u dt + u dx = u + a(u)u = 0: (10.1.12b) x x dt t dt t Thus, in this homogeneous scalar case, u(x t) is constant along the characteristic curve (10.1.9a). For an initial value problem for (10.1.11a) on ;1 < x < 1, t > 0, the solution would have to satisfy the initial condition u(x 0) = u0(x) ; 1 < x < 1: (10.1.13) Since u is constant along characteristic curves, it must have the same value that it had initially. Thus, u = u0(x0) u0 along the characteristic that passes through (x0 0). From 0 (10.1.12a), we see that this characteristic satis es the ordinary initial value problem dx = a(u0) t>0 x(0) = x0 : (10.1.14) 0 dt Integrating, we determine that the characteristic is the straight line x = x0 + a(u0)t: 0 (10.1.15) This procedure can be repeated to trace other characteristics and thereby construct the soluti...
View Full Document

This document was uploaded on 03/16/2014 for the course CSCI 6860 at Rensselaer Polytechnic Institute.

Ask a homework question - tutors are online