6 ks bey jt oden and a patra hp version discontinuous

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: olic conservation laws: A parallel strategy. International Journal of Numerical Methods in Engineering, 38:3889{3908, 1995. 7] K.S. Bey, J.T. Oden, and A. Patra. A parallel hp-adaptive discontinuous galerkin method for hyperbolic conservation laws. Applied Numerical Mathematics, 20:321{ 386, 1996. 8] R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel adaptive nite element methods for conservation laws. Applied Numerical Mathematics, 14:255{284, 1994. 9] A.J. Chorin. Random choice solution of hyperbolic systems. Journal of Computational Physics, 25:517{533, 1976. 41 42 Hyperbolic Problems 10] B. Cockburn, G. Karniadakis, and C.-W. Shu, editors. Discontinous Galerkin Methods Theory, Computation and Applications, volume 11 of Lecture Notes in Computational Science and Engineering, Berlin, 2000. Springer. 11] B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous nite element method for conservation laws III: One-dimensional systems. Journal of Computational Physics, 84:90{113, 1989. 12] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous nite element method for conservation laws II: General framework. Mathematics of Computation, 52:411{435, 1989. 13] K. Devine and J.E. Flaherty. Parallel adaptive hp-re nement techniques for conservation laws. Applied Numerical Mathematics, 20:367{386, 1996. 14] K. Ericksson and C. Johnson. Adaptive nite element methods for parabolic problems I: A linear model problem. SIAM Journal on Numerical Analysis, 28:12{23, 1991. 15] K. Ericksson and C. Johnson. Adaptive nite element methods for parabolic problems II: Optimal error estimates in l1l2 and l1l1. SIAM Journal on Numerical Analysis, 32:706{740, 1995. 16] J.E. Flaherty, R. Loy, M.S. Shephard, B.K. Szymanski, J. Teresco, and L. Ziantz. Adaptive local re nement with octree load-balancing for the parallel solution of three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47:139{152, 1997. 17] J. Glimm. Solutions in...
View Full Document

Ask a homework question - tutors are online