mar28 - “$07 Emmi 0 12 32 1 «E2 12 1 \/§ 1 \/§ 1 é, 1...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: “$07 Emmi 0 12 32 1 «E2 12 1 \/§ 1 \/§ 1 é, 1 — /1+‘/—/2+ 3+ /4 /5+0>——+—+—+—~+— Sr 1 1+6 1+E 1+6— 1+g 1+E 14 1 9 2 22 Or with a 1/2 outside the big sum, and then 2 as a coefficient of most of the terms. . The final answer is the same either way. ' t 73.. lim sinccdm = —1 ~ lirn cost does not exist, since cost oscillates between 0 and t—mo t—»oo 1. Ther integral diverges. 7b. The integrand is S 1/(1+$2). Since fooo fi do: = limth arctant 2: 7r/2, the desired integral converges by the comparison test. 2002 EYIMg-g 1007 rim/AL ’F‘k 4‘“ 3 1‘.— 12 (I! 771 A _ 5w ; Q" 2 H”) j ah. ’ —""“’ ’. Ce I J“ 1 __. _ I % Jr W ¥ M ‘ (’3' r < A 7 L #1,, 1 I, H a) ‘3’; I; at 37. (9 0/ DWIA (.1 71:0 -7 J- 4 L. 7' ‘1’ / :Ji 4 J +. ’ZoOo Eff/“q #2 1 “NW 7W0 S'EJQY’HTUV‘IQNT 7” D (Sh/W Mas—5"} 0H 4i q .. : J; (g 77,; <9 *2 3 I I 3 f 77? {1‘ qt) Q01) 4131.13 at? = 2r, (at—2f) @ (a) Using(4) and(7)inSection9.4,weseethatforg=0.1P(1—% K : 2000, P0 = 100, and A = w = 19. Thus, the solution of the initial-value problem is 2000 2000 _ _ 2000 —0.1: _ £00 ——O.1t _ § _ (b)P—1200 4-4 1200—1+198_041t 1+1ch —1200 19s —3 1 e*°-1t=(§)/19 4: ——0.1t=1n5—27 4: t=—101n5—27%33.5. . L ' ‘ / :2; , ‘ ’4'?" ~ 1. I @ 7+ XV~W e!” =x_ x2Y+2x‘/:9x3 ‘ 4' '-l I X17: X ’rC 0: 1+; 55—: C(17) x\ ' \ “f l ' X -f Y: X , viz I @ H'X ’ éiz“(s7f y’=3;flun . 2 H ’5) dz ; 3?} “(1—, 7'44 1; 0 1+ f=i2 M aft—(92‘ a) +fifl’épif‘ (“£5194 )7 —, o 57 rymmarfr '71 7' 11 - I - I’( l * X ‘ at?! i V _— _ J !_X r, y: j] 1/ : i _r\_ — I Ll (74175” 7' ’ R" v 3 ) with P(0) = 100, we have I: = 0.1, 6Xfilm 2 Cr Ir ‘ Co‘f‘ ‘01 " I @ Ara 5:4: J 4 - z]. Ji(z+zcufi)za{5 =/07T(L/+8ra18+‘fcn3fi)afi§ D :' my +2]7(I+C“ $34149 .- '617 firm: i “[06, : W/%}L; QTT/V- firu Adm“ u 1‘ 7r " I577— ” . c I‘d-U 47;” ./ ‘54: - @fi“ 3“ I #4653 7 fl (pawn *9 fvsm ‘2, 637‘)“ ' 7L9)?” “V‘H 1’ , x \, ,rzm = 4%“ Gasman? ‘ Mg ago-WV)" fimflm?” ' I 3 >l ()0 A’sfifi S'MJ A, M 15 W???” L7 “0 L \4‘3 Cam “4’15” flficfifim M I L; (“V if f XX. cm L’ / I ¢ «3? /~% 1 new" ' f " A a\ a : Ml q = g 6i 61%)“ M (AV 2} Y‘ I p -l -n 04¢! “ ...
View Full Document

This note was uploaded on 04/07/2008 for the course MATH 22 taught by Professor Dodson during the Spring '05 term at Lehigh University .

Page1 / 3

mar28 - “$07 Emmi 0 12 32 1 «E2 12 1 \/§ 1 \/§ 1 é, 1...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online