One-Dimensional Collisions

We define an inelastic collision as a collision in

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: involved, such as in a car crash. We define an inelastic collision as a collision in which momentum is conserved, but kinetic energy is NOT. The collision of a rubber ball with a hard surface is inelastic, because some of the kinetic energy is lost when the ball is deformed during contact with the surface. When two objects collide and stick together, the collision is called perfectly inelastic. For example, if two pieces of putty collide, they stick together and move with some common velocity after the collision. If a meteorite collides head on with Earth, it becomes buried in the Earth and the collision is considered perfectly inelastic. Only in very special circumstances is all the initial kinetic energy lost in a perfectly inelastic collision. An elastic collision is defined as one in which both momentum and kinetic energy are conserved. Billiard ball collisions and the collisions of air molecules with the walls of a container at ordinary temperatures are highly elastic. Macroscopic collisions such as those between billiard balls are only approximately elastic, because some loss of kinetic energy takes place—for example, in the clicking so...
View Full Document

This document was uploaded on 03/20/2014 for the course PHYS 215 at Lafayette.

Ask a homework question - tutors are online