2130_Chapter7_Notes

amn some examples of matrices are given below 12 34

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Exa (slide 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 Matrix For both theory and computation, we review matrix theory in this section and the next. A matrix A is an m ¢ n rectangular array of elements (m rows and n columns) denoted by a11 a21 . . . Öaij × A a12 a22 . . . am1 am2 ¤¤¤ ¤¤¤ .. . ¤¤¤ a1n a2n . . . . amn Some examples of matrices are given below: 12 , 34 123 , 456 14 25. 36 2 / 17 Transpose The transpose of A Öaij × is AT Öaji×. Note that the rows become columns, and the columns become rows: a11 a12 a21 a22 A . . . ¤¤¤ ¤¤¤ a1n a2n a11 a21 a12 a22 . .. . . .. . . am1 am2 ¤¤¤ A . . . T am1 am2 . .. . . .. . . a1n a2n amn ¤¤¤ ¤¤¤ ¤¤¤ . amn Examples: 12 34 T 13 , 24 123 456 T 14 25. 36 3 / 17 2 Conjugate The conjugate of A × Öaij × is A aij , where x iy ¤¤¤ ¤¤¤ a11 a12 a21 a22 A . . ....
View Full Document

Ask a homework question - tutors are online