2130_Chapter7_Notes

# If x1 xn are solutions then c1 x1 cn

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . . . . . . . . . . . . . . Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Homogeneous System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 4 5 Introduction System of n linear 1st order equations: x′ = p11 (t)x1 + p12 (t)x2 + · · · + p1n (t)xn + g1 (t), 1 x′ = p21 (t)x1 + p22 (t)x2 + · · · + p2n (t)xn + g2 (t), 2 . . . x′ = pn1 (t)x1 + pn2 (t)x2 + · · · + pnn (t)xn + gn (t). n Equivalent to x′ = P(t)x + g(t) : ′ x1 g1 (t) p11 (t) · · · p1n (t) x1 . . . . + . . .. . . . . = . . . . . . . ′ gn (t) pn1 (t) · · · pnn (t) xn xn x′ P(t) x g(t) 2 / ?? Initial Value Problem Theorem 7.1.2 If the functions P(t) and g(t) are continuous on a...
View Full Document

## This note was uploaded on 03/19/2014 for the course APMA 2130 taught by Professor Bernardfulgham during the Fall '09 term at UVA.

Ask a homework question - tutors are online