2130_Chapter7_Notes

# E all entries are real numbers and a bi is a complex

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: v3 = −v1 − v2 c1 1 0 c2 = c1 0 + c2 1 =⇒ v = −c1 − c2 −1 −1 Label v(2) 1 = 0 −1 and (c1 or c2 nonzero) 0 v(3) = 1 . −1 10 / 11 Exa 2 (slide 4) 1 1 (1) = 1 = (1) = 1 e2t λ1 = 2, v ⇒x 1 1 1 0 λ2 = −1, v(2) = 0 , v(3) = 1 −1 −1 0 1 =⇒ x(2) = 0 e−t , x(3) = 1 e−t −1 −1 General solution: 1 1 0 x = c1 1 e2t + c2 0 e−t + c3 1 e−t . 1 −1 −1 6 11 / 11 APMA 2130 Section 7.6: Complex Eigenvalues Post-Lecture Handout Dr. Bernard Fulgham University of Virginia July 22, 2013 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 How to Solve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Solution (slide 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4...
View Full Document

Ask a homework question - tutors are online