Practice 4 Solutions

# 2 1 1 0 1 1 1 1 1 6 2 3 2 1 1 011 1 1 1 3 find an

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: di erential equation y = Ay where 2 −2 3 A = 1 −1 1 , −1 22 1 y(0) = 1 0 λ = 1, 1, 1 −4 8 4 100 1 −2 3 t2 e t −2 4 2 = et 0 1 0 + tet 1 −2 1 + 2 000 001 −1 21 eAt 4 1 −1 2t t + tet −1 + t e 2 1 y=e 2 0 0 1 [5] Solve the di erential equation y = Ay where −2 −1 1 1 −1 , A= 2 2 3 1 0 y ( 0) = 1 2 λ = 0, 0, 0 4 40 100 −2 −1 1 2 t −4 −4 0 1 −1 + = 0 1 0 + t 2 2 4 40 001 2 3 1 eAt 0 1 4 2 t −4 y = 1 + t −1 + 2 2 5 4 [6] Solve the di erential equation y = Ay where 1 3 1 1 1 , A = −1 2 −2 −2 1 y ( 0) = 0 2 , 3 × 3 Exercise Set I (identical roots), November λ = 0, 0, 0 eAt 100 0 4 2 1 3 1 2 t 0 −4 −2 1 1 + = 0 1 0 + t −1 2 001 0 8 4 2 −2 −2 4 1 3 2 t −4 y = 0 + t 1 + 2 8 2 −2 [7] Solve the di erential equation y = Ay where −2 3 2 A = −1 2 −2 , −1 1 3 2 y(0) = 0 1 λ = 1, 1, 1 4 −4 −8 100 −3 3 2 2t te 4 −4 −8 = et 0 1 0 + tet −1 1 −2 + 2 001 −1 1 2 0 0 0 eAt 2 0 −4 t2 e t 0 y = et 0 + tet −4 + 2 1 0 0 [8] Solve the di erential equation y = Ay where 2 1 −1 2 , A = −2 −1 −1 −1 2 1 y ( 0) = 0 1 λ = 1, 1, 1 100 1 1 −1 000 t2 et 0 0 0 2 + = et 0 1 0 + tet −2 −2 2 000 001 −1 −1 1 eAt 1 0 0 2t t + tet 0 + t e 0 0 y=e 2 1 0 0 , 3 × 3 Exercise Set J (symmetric matrices), November , 3 × 3 Exercise Set J (symmetric matrices) Linear Algebra, Dave Bayer, November , [1] Find An where A is the matrix 210 A = 1 1 1 012 1 −2 1 1 0 −1 111 n n 0 2 3 −2 4 −2 + 00 0 + 1 1 1 = 6 2 3 1...
View Full Document

## This document was uploaded on 03/24/2014 for the course MATH V2010 at Barnard College.

Ask a homework question - tutors are online