Practice 4 Solutions

# Equation y ay where 200 a 2 2 1 221 2 y 0

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: eAt where A is the matrix 221 A = 0 2 1 012 0 −1 1 033 1 −1 −2 3t e e 0 1 −1 + e2t 0 0 1 1 0 0 + = 2 2 0 −1 1 011 0 0 0 t λ = 1, 2, 3 eAt [8] Find eAt where A is the matrix 120 A = 1 0 1 112 1 −3 1 1 1 −1 111 t 3t e e e −1 3 −1 + 0 0 0 + 1 1 1 = 4 2 4 0 0 0 −1 −1 1 222 −t λ = −1, 1, 3 eAt , 3 × 3 Exercise Set C (distinct roots), November 3 × 3 Exercise Set C (distinct roots) Linear Algebra, Dave Bayer, November , [1] Solve the di erential equation y = Ay where 120 A = 1 1 2 , 011 eAt 0 y ( 0) = 1 1 2 −4 4 2 0 −4 244 t 3t e e e −2 4 −4 + 00 0 + 2 4 4 = 8 4 8 1 −2 2 −1 0 2 122 −t λ = −1, 1, 3 0 −4 8 t 3t e e + e 8 0+ 0 y= 8 4 8 0 2 4 −t [2] Solve the di erential equation y = Ay where 222 A = 0 2 0 , 121 2 y ( 0) = 0 1 λ = 0, 2, 3 eAt 1 1 −2 282 0 −3 0 3t e 1 0 0 + e 2t 0 0 0 0 1 0 + = 0 3 3 −1 −1 2 141 0 −1 0 0 6 0 3t 1 2t + e 0 0 +e 0 y= 3 3 0 3 0 [3] Solve the di erential equation y = Ay where 210 A = 2 2 1 , 022 2 y ( 0) = 0 1 λ = 0, 2, 4 eAt 2 −2 1 2 0 −1 221 2t 4t 1 e e 4 −2 + 00 0 + 4 4 2 = −4 8 4 8 4 −4 2 −4 0 2 442 5 3 5 2t 4t 1 e e 0 + 10 y = −10 + 8 4 8 10 −6 10 , 3 × 3 Exercise Set C (distinct roots), November [4] Solve the di erential equation y = Ay where 200 A = 2 2 1 , 221 2 y ( 0) = 0 1 λ = 0, 2, 3 eAt 0 0 0 000 100 3t 1 e 1 −1 + e2t −2 0 0 + 6 2 1 = 0 3 3 0 −2 2 621 −2 0 0 0 0 2 3t e 1 13 y = −1 + e2t −4 + 3 3 2 13 −4 [5] Solve the di erential equation y =...
View Full Document

## This document was uploaded on 03/24/2014 for the course MATH V2010 at Barnard College.

Ask a homework question - tutors are online