Final Exam Solutions

# Final Exam Solutions - Final Exam December Final Exam...

This preview shows pages 1–8. Sign up to view the full content.

Final Exam, December , Final Exam Linear Algebra, Dave Bayer, December , [ 1 ] Find the intersection of the following two a ne subspaces of R 3 . x y z = 1 1 1 + 1 0 1 1 0 1 a b x y z = 1 2 2 + 1 0 0 1 0 1 c d

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Final Exam, December , [ 2 ] Find an orthogonal basis for the subspace of R 4 de ned by the equation w + x - y - z = 0 . Extend this basis to a orthogonal basis for R 4 .
Final Exam, December , [ 3 ] Find the determinant of the matrix 2 1 0 0 0 0 0 2 2 1 0 0 0 0 0 2 2 1 0 0 0 0 0 2 2 1 0 0 0 0 0 2 2 1 0 0 0 0 0 2 2 1 0 0 0 0 0 2 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Final Exam, December , [ 4 ] Solve the di erential equation y 0 = Ay where A = 2 1 3 0 , y ( 0 ) = 1 0 λ = - 1, 3 e At = e - t 4 1 - 1 - 3 3 + e 3 t 4 3 1 3 1 y = e - t 4 1 - 3 + e 3 t 4 3 3
Final Exam, December , [ 5 ] Express the quadratic form - 4 xy + 3 y 2 as a sum of squares of othogonal linear forms. λ = - 1, 4 A = 0 - 2 - 2 3 = - 1 5 4 2 2 1 + 4 5 1 - 2 - 2 4 - 4 xy + 3 y 2 = x y 0 - 2 - 2 3 x y = - 1 5 ( 2 x + y ) 2 + 4 5 ( x - 2 y ) 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Final Exam, December , [ 6 ] Solve the recurrence relation f ( 0 ) = a , f ( 1 ) = b , f ( n ) = 3 f ( n - 1 ) - 2 f ( n - 2 ) f ( n + 1 ) f ( n ) = 3 - 2 1 0 n b a = - 1 2 - 1 2 b a + 2 n 2 - 2 1 - 1 b a f ( n ) = ( - b + 2 a ) + 2 n ( b - a )
Final Exam, December

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern