ME302kev

ME302kev - .__‘|_.. I n V . L i _ ,..f:_@::z.__figaw . ....

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .__‘|_.. I n V . L i _ ,..f:_@::z.__figaw . . _ .. ._ _ ________ (mm w flag. GLDSEQ uL-ufi {fa mfflnfifij + Mobil} 1.) t a”, u] :41, ‘ In; FRI-LES ___., , .. __ __.________*. _._. _ _ O: Hrihlu Hfi‘l‘ 6'2 ~ We FF éfiifiifi mac.) " 1:! fifléblhfl M - M M :- q __ N 4 H,{ _ -L E, _.1 i -———‘”1 ' ‘ -—- —. -t“**i*%*3.._E*1'=_<‘ii*i‘5:§:% +m E w t _ ._ E ramffl UL” it.- E S Slrfil Tit! vhniL NWT + 3. "*1 NE llama-egg?“ ’3... 13:. Ta}; -du.+ PM: flan-r : _ :3 3‘. W Td-fildh‘qfl’fip PE: flaw-At. _ Arc; $4 Hm “1%.? P ‘ "’ d? z“ _______ __ _..__ ._ ____ E auras”? -: .13 551,57 ..- 35““ go Ecwfla$u+ E {Lain firemen: 5'a§é*51'£?—'5 3 mmfrrg . ‘ _ T , "‘ _ 15:»17' a u: E 3 TIME RAH' CT ale—V ‘é%l+éM¢-fie'ifiab£3¢_ . _. _‘fi _ E 1- 559'- 51—5; +mfiJL—As) Ea : Wusrm‘r: C'*(H£A,uwljfj - $3.1; {- ifififit'imgfla 2:) '2 AunnAfiuw: A! (E-ua§+Fa(fi#¢;>- 715,55 (L'Lai-{fl-gsa) C LIN-5“: EYE-.1 Athfilla'lf'E-L'FD fFQQ—z_fij-Tac.£h 5'3 33 3' ' ru‘htr'rff-q? TEFL!” 'fliW‘AhB' a “if! Rfigimarfl-LI 19m; 95-5 mmrwr “VHF-L g rLr-qj; amen 1 ’“fimt __ '- 5r: :q; 3 PW 1334.”,(g‘j-r “'5‘? ' 1 E, was Fol. aim}: G;wag?'d5 fiat—ruin f LIMlfi-i " z : {.1 Cu :5? MM”: £115.: T “L‘“"S R4T¢.{r.--:) J “1-D;'31c. $T'cfifirTJ 53:. TE. ' L l i!» t. 7H; hx-hw Siam-'44?“ hrh- ' 3 “Wimp '7"; I 1 I Adaflgr My =Cr-1: rartr Emma-:23, Tc. 1.1Ti*lu. (I) FIFE) _.- l. I T" 1" A-%*‘%AT*EM% Az'b¢#:$JT=LlH—:% Pt”? H .. TH ‘ a g ‘Lmfl TIH-TE. 'bl'db“ ALI-5| "Elfl‘fi' I C'l'"""u'ia k'sfi PfiLf'rfl-olflfi. Fhmia To”! GA PM. cm”. Pm: .1, “ n==wnwtfi m4 _ H I ‘ “n”? 9%" Tia-fl“ pap-H 3:: n7“ MIL. Plul-?.u, ' " “T. N; p. "E [Fflfiflfirci 5.19:0 H? a "h Ham-gnu {1125 1.1.1 [SEMrfla-F!L*. a..ng “it. ._._ i . __, - - MESOZ 2mm? EXAM Name. E UN 21}? 47’ SHOW ALL YOUR WORK. INCLUDE UNITS i3: CONVERSEDNS. PROBLEM 1'. {15 points} A rigid tank nae a uaiurne at CI! in?“ and eantaine a iiquit‘i—uauer mixture of R- 134a at 24°C. The liquid in the tank fille .UE m3 of the volume. The 1.raperfiile the remaining volume. {a} What is the maaa of the R4343 in the tank? _n r .5 H I _ c A“; "4"“ R ‘fC=Ltcxgfi£‘tC Ltufltt .‘L $943 tit ant-«0323'? Pitt“ . I ,. d g t-‘I X. J.“ z. J5 ., i U if n Nye; , fr?“ 1‘? begin 1&- "If: 1;. e57 . . _...—o-- — [/0 tux {VT fiflfi’fit'T‘ if "'- 1. r 5'4— .- ’ H:- rci' ?‘i pair: I: H'jat‘; 6—, Etta "I {b} What is the iquaIitt:r ef the mixture? / fit/l an L L.-1 T‘- -- —'l fl -_- T _ H _t’}:{:_ llII III “Mt-ml. 155-297?! ‘I- PROBLEM 2: [2D points] I An air conditioner is used to cool a house in the summer. Heat is removed from the house at a rate of t4,ooe erwn. The air conditioner transfers heat to the outdoors at a rate of 15,3013 Etui'h. Caiouiate'. (a‘i the power required to run the air conditioner {b} the coefficient of performance of this air conditioner fin—b— - ” ‘i't 1. . "9 h} ' rd $24!..fl-‘ig “T If“: ‘2‘. a ‘5 fisufhr ‘I E- | I . _ II: A "-E_' U " 1")" _' CiliaL-‘f — : 5" E EHEQGFE‘s-f’hf ' ' J‘JEHG-fflaua 'lilu/ I H‘— I: .-' r. ." NJ. )’ ’ ‘ErorsssurfirlH C aflfifif _ 11—.- ——-III 3/ " '- L“ r/He‘r‘n C-‘flLF- IEE‘GD o} If the outside temperature is 1G4”F what is the coolest possible indoor temperature that oouid be maintained with the same power input? _. h. “a... -. . 'IE‘H F— fratt’nd an a -.- {77:2 Hm |3_ “F I'.'.'"_L (En/n" :i: “r if??? L6 I], “fit See-rs": Sign —" "FrLrH'r ii—t‘t 1 4': "v PROBLEM 3 {35 points} An ideal gas in a closed system undergoes a thermodynamic cycle consisting of the following processes: Process 1'2: compression with PU=constant. (3} Skate.” the Cyde D” the PM diagram, from p121 ban “:15 m3 m Ufa; mill UTUFOI Draw constant-temperature lines on the diagram. Label states 1, 2. and 3. Identify the F ' L and ‘ti' values for each state. Process 2—3: constant pressure to y3=y1 P {her} Process 3-1: constant volume, U1-U3=-3549 ltJ. Changes in kinetic and potential energy are negligible. {in} Calculate the work ancl the heat transfer for process 2-3. "Fifty ct' 52> !- 1 _ _... .-| ) HUS-ll 1 p 4| 1"“ “I? [I L.._1r. '- JI'lvr‘l.1 y-(liill UL l IBM-Wt cw? {A 7”"?! raj/w 'I.t'.;}.r;d' F: “ FLT Ed r : '7' L'CJI Far-I. I 7—j-F-l F} .._ _ I iii—t F D U. Ln 4 Lil L r \ _ __ If _ LIN]- _‘__ _i Ilf‘ur2‘" K]? ‘-__I LA II 1‘ __ “CLIP? I" ‘13 L321 ’r _ 1'". F}J§Lifilkj_ Elia—Ir f -r J—r'r' :- Ip— ¢t ' Pitl [ 2" 3'1] ML?" -: " he“! _ ’3’ v 2-H” “servos—t r s r1 be - e—ts I — 2' +_ _1 l " qu F fix I it “H ,r ‘ feet :2 + cs: J k"'}'l"f'31 til. I. tirlr’ / L .--- Eli/It‘ll. I{)_ .V. I r to} Is this agpower cycle or a refrigeration cycle?($how your work. " \le PROBLEM 4 {3!} points) Air {an ideal gas with constant specific heats} moves through a compressor and then through a nozzle at a rate of i1? lhrni’s. The air enters the compressor at 60°F and 14.?psi and exits the compressor at 25‘} psi. The air exits the nozfle at a temperature of 4o”F. The power input to the compressor is 2!] Btuta. Heat transfer at the compressor is negligible as are kinetic 8: potential energies at the inlet 8t exit of the CD l‘f'l presso F. Compressor AJR Nozzle R = 53.59 fi'lbflihm'°R -—e c,,t = 0.2:“) Btutlhrn'”Fi ct = p.1't1 stutibm”e —\_/—/—v State any {other} assumptions you make. a} Determine the temperature at the compressor exit. Hr ._ F} in Ira TE: gas-F a; e (:3, frfil'ihr: Eefirbimrfi lFL “11:51 it} 1 LL} 5: '1’” {'t'l‘r‘t‘lmI / "t c ‘7 11-“ 13‘ 4" Edi—Card get-D ""'_ 5 a _._t ’Jr' its? :5 C: F611 "1:13 ’75: hr I" _« “if” .— infirm tr] ~ LoE-‘Mr'rv: ’- r. F set. {gfie—Tcy rte = a — — ‘— _ ‘ “a flit-f tp"f1"'fl {f b) Find the uelocityhof the air as it exits the nozzle. Li}! 'Z 'I I. q? x I ' ‘.. h.“ “H; If? U". 3"- PHI-1 {ht-1 2': “$3 1.. If I I. /L tkLJF/iK-I- Vflirymc—J'jvhq‘xfl! 'C "J- _—. l 1_ .th‘ofa ‘Slt'F'nq .r -. ’ t“:\ - 3'3 \Jfi J" L “1' i I, L . I '1' :2." Pfi- eji Calculate the vol_u_r_r_t_etr_icflogr__rate hehtreen the compressor 8: the nozzle. _ _/ «if . “if Nil" - fit?) 'r i. J F \‘r 1 .--"' ('1 I'— t- i -.tt'L* I» :' ~ I m 1r :3 - L.» - I“ IL- r: t it- A . f; ...
View Full Document

This note was uploaded on 04/07/2008 for the course ME 302 taught by Professor Staff during the Winter '06 term at Cal Poly.

Page1 / 5

ME302kev - .__‘|_.. I n V . L i _ ,..f:_@::z.__figaw . ....

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online