Chapter_50

# Hence result by recursion b exponential spacings let

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tatistics of a sample of size n − 1 uniform over (0, U(n) ). Hence result by recursion. (b) Exponential spacings Let X1 , . . . , Xn+1 ∼ Exp(1), with pdf e−x , x > 0, independently. Deﬁne, Sk = X1 + . . . + Xk , k = 1, 2, . . . , n + 1. CLAIM U(k) = Sk , Sn+1 k = 1, . . . , n ⇒ U(1) < . . . < U(n) are ordered U (0, 1)’s. Proof n+1 fX (x1 , . . . , xn+1 ) = n+1 e −xi = exp − i=1 xi xi ≥ 0 i=1 s1 = x1 s2 . . . = x1 + x 2 sn+1 = x1 + x2 + . . . + xn+1 ⇒ x1 = s 1 x2 = s2 − s1 x3 . . . = s3 − s2 xn+1 = sn+1 − sn fS (s1 , s2 , . . . , sn+1 ) = fX (s1 , s2 − s1 , . . . , sn+1 − sn )|J | 62 where ∂ x1 ∂s1 ∂x2 ∂s1 ∂x1 ∂s2 ∂x2 ∂s2 ··· ∂x1 ∂sn+1 ∂x2 ∂sn+1 ··· |J | = . . . 1 −1 0 . . . . . . 0 ∂xn+1 ∂sn+1 ··· 0 −1 · · · 1 0 = ∂xn+1 ∂s1 ∂xn+1 ∂s2 ··· 0 . . . 0 0 ··· =1 1 n ⇒ fS (s1 , s2 , . . . , sn+1 ) = exp −s1 − (si+1 − si ) i=1 = exp(−sn+1 ) Now, let v1 = s1 , v2 sn+1 = s2 , . . . vn sn+1 = sn , vn+1 sn+1 0 &l...
View Full Document

## This document was uploaded on 03/25/2014.

Ask a homework question - tutors are online