Math2271_1112_T2_Solns

Math2271_1112_T2_Solns - ZZ WNK5 Math 2271 Differential...

Info icon This preview shows pages 1–9. Sign up to view the full content.

Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

Image of page 6
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

Image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ZZ. W‘NK5 ’ Math 2271 Differential Equations for Scientists and Engineers: Test 2 Wednesday February 29, 2012 10:30am to 11:20am Name: 60 L01 [bids Student Number: Instructions: Complete all 5 of the following problems in the Space provided. Notes and calculators are not permitted. All cell phones and pagers are to be turned off. Students must present valid university identification cards. 1. Find the general solution of the ordinary differential equation 4— N “(L3 { y’”+8y”+28y’+ 32y = 0. meAor tam; (D3 Jr 8B1 + 18D 1‘ ’5ng —. o Clmrhcluighg Ecbln ‘_ x3 + 8): l’ 28A 4' 31 3 D U) A :' ’"Z l$ a (00* $53402, L- 7A“— ?pi-z)‘ + 225m) k 31 = o (FM/“f ll‘c eharaclnx‘sbL fibucdt ma '. >\"’+ lo/\ + \(o MLI A3+5XL+18>A +31 —()\3’r 2x1) ® txz+1s>~+ 37. -Lb)\1—r 0.)) lb)‘ *31 —( mx+§13 0 $ -, xg-LaxH 299431: LMZBLVHMm) —» 1200*3 a? m CEUAAMAX {L \LUVM '. xzjfit—fi W Z. - wank—a 7. :“Bi/LH ’ We, 351wer Saflghm is 'h/wts: «2‘ «But, 1350 2 (3‘6 my Jr C; a [43qu 5 WHY!) - 2. Using the method of undetermined coefficients find the general solution of the differ- ential equation y” — 4y’ + 4y = (2x — 3)e2"‘. Hwaxmcwe a \ 12v“- vm‘rk L2 b’ADM [Ag-:0 Exgmvmfimm X54; + 4 : 04,31 3 0 we, hm 0‘ o‘wbkc (00* $9 ‘Tka, “Omega/news 50.0416 LW :6 271, 1x, 33“” ‘T- C16 4- C7121, 6 ~—-—-— Nm w w w m m minivans sow 409” 0‘99th on "ML 9H3 5 our Afiuan. Ear Ms. Spemjl cm, M,st a pmii’cviar soaedv'm'. 32m, 3 + EN, 6 + 715:: ff“- 12.51, QPLXA : be f; 1271. but : mat/Hva + amend)?” ‘Z 23L ‘Puo: 27%} e u + 1/184, 6 \L SE ‘5 a: Li) : Am [3}; Db) 0w“ 4 2H Dawn) 6}!“ 4’ ZEKEI} ’r 23?) e,”L + E [ Lab 4- but/7’) Cm 72L 3 A [433+ ‘8» m) 6,2" + EMfiHzJ’ +bze)€, —> 7"“ L3? 7‘ \A K4¢1‘t%bb+7x) + 3 [438+ m? «HOLY "‘ o?“ 01*») - ‘W 3wzflm3) + ‘Mfi + 4&316“ ='-‘ M WE») cu : (11/336123; ® 7”” 2Pr>~3 :3 14:1; 2 EB=Z a g; E. aus‘w‘w‘iwx Sojldwwi APLNA: L—ézlzi'éLZBE/Zw Cit/um} SaQAAw 36M: gum + mm) " 7” 2°“ - 3 lat, - Q6 ‘1 Claw; + l-§1>&t.éd, )6 3. Consider the ordinary differential equation 4 Marks -* y”’+9y”+27y’+27y=0 E = 0 It is known that one solution of the equation is 3/1 = e‘396 . Use the method of reduction of order to find a second linearly independent solution. No marks will be given for solution methods other than reduction of order. ,3: Lt’r '31“— M 3" ® M‘ l l 431' —3bL 3 “312 — a}: M -?>u6 3 (want u ,3 l ,3 lu— ‘3l‘*l‘*%‘*)0 Lt lu‘~3u‘>e t : (MH- bul+qu)6~3& u x 43%, \ ‘ j; : “Blu’bu'+‘lu)t 4— Ullvbul +0” -3 -= (um—w my —2au)(, * WM“ L431 —_ Lui|_ quu‘flq ul ‘7?” u I 3} I ‘31' + all“ 40” +‘lu)+Z lu~3u>+Bu @ : Um 6—33., : O J. UM:0 :5 LL: Clxz+ CAM, + C3 4 marks « 4. Find the general solution of the ordinary differential equation x2y” + 4333/ + 2y = 0. “\L'WoA -\ : Ld’ u, a (,2 7’"; © ,2 . 9—3; 3 d = A an} M A13 At An, AN, 4% Alt) R -% -2d —1 1 41% ’l = 6 ‘1': _‘3 t 6, 0 Li -A > L A1 317' kdil I: Tim. one be.me Z?— -—Z-2 , C e K&~fl>+4e%ciéfl+23:0 (122 5” Ag .. 47 —7 .3 + 3d; + 7, a o _____, 6‘? (ii 3 ® Ckaru’fi ers’nL Eemhmz /\ +75>\+‘L ‘5 0 =3 LA+13LN+\)=O :5 )\:’\ —7, , a; , HQMCL 6:- 6] a + CLe/ 2.} : Bu‘r 1:6,; 97 245le o -‘ '1 3Lw3:cie“°° iclcflm : 3+ 6; ___® (MAL—v, [m m a» mag) WV *3: lm >5 5‘: Mi (9 vafi “Mm, M M 056'- \W\Lw\—\3 + 3va +3FXDLW‘3 0 .___._® we, MVA acbvdma mkgmf; = o 1) tm+zymm:a (D SHALL W\= "\ mag MA:-"Z A“ {m9 M54“wo{' Wok I‘WL $012M“? W fin): .C_\_+ ® )0 21/ 5 WMF¥6= r 5. Using the method of variation of parameters, find a particular solution of the differential equation y”—2y’+y=ezln$; x>0. / (All/VAL Umbbl: ovwl M’ LfiltviL N N WA.“ W 2 6/21., die/3L Lab 2/1., Zap Mm) at t 6/ “HQ.- bbe’ :0 a a Wl : (7 $6M“ \.,. __. le/ZLQMIJ. 8&1},th (Hat) C? “W00 W, (DI/3*: ~ bl, by»qu > W1, L»)? fiWL lvfiefirw‘z ‘33 PTA/3‘5 {Luv}: “ REL thcdm ='\<&m~>tl¢ 3— WM = +93%» +33 : sgLLx—uzm) L? “r Mlt’w) 7" 31M); (ii. .\_ DQQVDL 4... 3 MCE‘L I: ><>QWL’3-’ a, 3 at [,vac’t 7 gnaw 6L Pmch soLfix/M Is mag): {lg/5L(I~Z)ml> +0L1¢iUn>L~\> 4 ‘: fill/d} COL (lzuvxbL " 3) ———~® ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern