W2013CHM2311 Part 3a Notes

# That the transforma0on matrix for the vyz opera0on

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y’ = 0x  ­1y + 0z x N H H H z’ = 0x + 0y + 1z In matrix nota.on: Ⱥ1 0 0Ⱥ Ⱥ x Ⱥ Ⱥ (1)( x) + (0)( y ) + (0)( z ) Ⱥ Ⱥ x Ⱥ Ⱥ0 − 1 0Ⱥ × Ⱥ y Ⱥ = Ⱥ(0)( x) + (−1)( y ) + (0)( z )Ⱥ = Ⱥ− y Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ0 0 1Ⱥ Ⱥ z Ⱥ Ⱥ (0)( x) + (0)( y ) + (1)( z ) Ⱥ Ⱥ z Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Matrix Representa0ons of Point Groups A more General Example: An object in the C2v point group contains the following symmetry elements: E, C2, σv(xz), and σv(yz). Determine the transforma0on matrices for each of the corresponding symmetry opera0ons. Step 1: Draw Cartesian coordinate system Follow the right hand rule to determine the axes x, y, z z y x Step 2: Imagine a sphere in this coordinate system, centered around the coordinates (0, 0, 0) z y x Matrix Representa0ons of Point Groups (C2v Example) Step 3: Pick a point on the sphere (e.g. (1, 1, 1)) and determine how each symmetry opera0on will aﬀect the x, y, and z coordinates for that point on the sphere. C2 σv(xz) y x σv(yz) Matrix Representa0ons of Point Groups (C2v Example) Step 4: Determine the appropriate transforma.on matrix. We will label the new coordinates that result from the transforma0on as: x = new x y = new y z = new z Thus, we can deﬁne the transforma0on matrix as follows: [New coordinates] = [Transforma0on matrix][Old coordinates] OR Ⱥ x'Ⱥ Ⱥ x Ⱥ Ⱥ y 'Ⱥ = [transforma tion matrix ] × Ⱥ y Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ z ' Ⱥ Ⱥ z Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Iden0ty Opera0on: E (C2v Example) The x, y, and z coordinates are unchanged by the iden0ty opera0on. Therefore, x’ = x × 1 y’ = y × 1 z’ = z × 1 The matrix equa0on corresponding the E opera0on on the coordinates is: Ⱥ x'Ⱥ Ⱥ1 0 0Ⱥ Ⱥ x Ⱥ Ⱥ y 'Ⱥ = Ⱥ0 1 0Ⱥ Ⱥ y Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ z ' Ⱥ Ⱥ0 0 1Ⱥ Ⱥ z Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Thus, we have determined that the iden0ty opera0on can represented by the following transforma0on matrix: E: Ⱥ1 0 0Ⱥ Ⱥ0 1 0Ⱥ Ⱥ Ⱥ Ⱥ0 0 1Ⱥ Ⱥ Ⱥ 2 ­Fold Rota0on: C2 (C2v Example) Upon rota0ng around C2, the new x, y, and z coordinates are given by: x’ =  ­x = x ×  ­1 y’ =  ­y = y ×  ­1 z’ = z = z × 1 The matrix equa0on corresponding to the C2 opera0on on the coordinates is: Ⱥ x'Ⱥ Ⱥ− 1 0 0Ⱥ Ⱥ x Ⱥ Ⱥ y 'Ⱥ = Ⱥ 0 − 1 0Ⱥ × Ⱥ y Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ z ' Ⱥ Ⱥ 0 0 1Ⱥ Ⱥ z Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Thus, we have determined that the transforma0on matrix for the C2 opera0on must be: C2 : Ⱥ− 1 0 0Ⱥ Ⱥ 0 − 1 0Ⱥ Ⱥ Ⱥ Ⱥ 0 0 1Ⱥ Ⱥ Ⱥ Reﬂec0on: σ (C2v Example) Reﬂec.on through the xz mirror plane, σv(xz) Upon reﬂec0ng through the xz plane, the new x, y, and z coordinates are given by: x’ = x = x × 1 y’ =  ­y = y ×  ­1 z’ = z = z × 1 The matrix equa0on corresponding to the σv(xz) opera0on on the coordinates is: Ⱥ x'Ⱥ Ⱥ1 0 0Ⱥ Ⱥ x Ⱥ Ⱥ y 'Ⱥ = Ⱥ0 − 1 0Ⱥ × Ⱥ y Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ z ' Ⱥ Ⱥ0 0 1Ⱥ Ⱥ z Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Thus, we have determined that the transforma0on matrix for the σv(xz) opera0on must be: σ v ( xz ) : Ⱥ1 0 0Ⱥ Ⱥ0 − 1 0Ⱥ Ⱥ Ⱥ Ⱥ0 0 1Ⱥ Ⱥ Ⱥ Matrix Representa0on of C2v Following the same procedure, we can determine that the transforma0on matrix for the σv(yz) opera0on must be: σ v ( yz ) : Ⱥ− 1 0 0Ⱥ Ⱥ 0 1 0Ⱥ Ⱥ Ⱥ Ⱥ 0 0 1Ⱥ Ⱥ Ⱥ Therefore, the four transforma0on matrices for four symmetry opera0ons in the C2v point group are: Ⱥ1 0 0Ⱥ E : Ⱥ0 1 0Ⱥ Ⱥ Ⱥ Ⱥ0 0 1Ⱥ Ⱥ Ⱥ Ⱥ− 1 0 0Ⱥ C2 : Ⱥ 0 − 1 0Ⱥ Ⱥ Ⱥ Ⱥ 0 0 1Ⱥ Ⱥ Ⱥ Ⱥ1 0 0Ⱥ σ v ( xz ) : Ⱥ0 − 1 0Ⱥ Ⱥ Ⱥ Ⱥ0 0 1Ⱥ Ⱥ Ⱥ Ⱥ− 1 0 0Ⱥ σ v ( yz ) : Ⱥ 0 1 0Ⱥ Ⱥ Ⱥ Ⱥ 0...
View Full Document

## This note was uploaded on 03/28/2014 for the course CHM 2311 taught by Professor Richardson during the Winter '09 term at University of Ottawa.

Ask a homework question - tutors are online