midterm2-B-solution-public

# Yp a1 xex yp ax 2ex yp yp 2yp ax

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a particular solution: yp = axe−x (we need x multiplied to e−x because e−x is a solution to the homogeneous part). – – – – ￿ ￿￿ yp = a(1 − x)e−x , yp = a(x − 2)e−x , ￿￿ ￿ yp − yp − 2yp = a(x − 2)e−x − a(1 − x)e−x − 2axe−x = −3ae−x = −6e−x − 3a = −6, a = 2 So, yp = 2xe−x • The general solution is y = yp + c1 y1 + c2 y2 = 2xe−x + c1 e−x + c2 e−x • Alternatively, use variation of parameters – y = u1 y 1 + u2 y 2 , ￿ ￿ – The Wronskian W = y1 y2 − y1 y2 = e−x (2e2x ) + e−x e2x = 3ex y2 f ( x) e 2x ( − 6 e − x ) =− =2 W 3e x y1 f ( x ) e −x ( − 6 e − x ) = = = − 2 e − 3x W 3e x u￿1 = − u￿2 1 – Integrate: u1 = ˆ 1dx = x + c1 u2 = ˆ 2 −2e−3x dx = e−3x + c2 3 – So, the general solution is 2 y1 = 2xe−x + c1 e−x + e−3x e2x + c2 e2x 3 2 −x −x = 2xe + (c1 + )e + c2 e2x 3 = 2xe−x + c3 e−x + c2 e2x where c3 = c1 + 2/3. 3. [5 marks] Find the solution of the initial value problem y ￿ y ￿￿ = x, y (1) = 1, y ￿ (1) = 1 • Let u = y ￿ , y ￿￿ = u￿ , then, uu￿ = x, • separable for u, udu = xdx • Integra...
View Full Document

Ask a homework question - tutors are online