Lecture 5 Notes

# 92 property 1 proofsketch now let v2 be the root of

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 00000000000 2 111111111111111111111111 000000000000000000000000 C h2 2 t2 t3 T3 v3 CSE 254 - Metric Embeddings - Winter 2007 – p. 9/2 Property 1 - Proofsketch Now, let v2 be the root of the BF S -tree of the previous level ′ ′ ′ It has disjoint paths h1 t1 , h2 t2 , h3 t3 of length 4∆ and if we ′ ′ ′ let h1 ,h2 ,h3 be their midpoints ′ ′ d(hi , hj ) > 8∆ for all i = j Similarly, for the ﬁrst BF S -tree of the decomposition Look at disjoint paths in the tree ′′ ′′ ′′ Deﬁne h1 ,h2 ,h3 as before ′′ ′′ ′′ h1 ,h2 ,h3 are pairwise more than 4∆ apart CSE 254 - Metric Embeddings - Winter 2007 – p. 10/2 Property 1 - Diagram 2 v2 T2 t’1 t’3 h’3 t’2 h’2 2 111111111111 000000000000 111111111111 000000000000 2 v 111111111111 000000000000 2 111111111111 000000000000 h2 111111111111 000000000000 111111111111 000000000000 h’1 111111111111 000000000000 C 111111111111 000000000000 >12 111111111111 000000000000 w 111111111111 000000000000 2 111111111111 000000000000 >12 h3 2 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 >12 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 u 2 h1 111111111111 000000000000 111111111111 000000000000 v3 CSE 254 - Metric Embeddings - Winter 2007 – p. 11/2 Property 1 - Diagram 3 v2 h’’3 2 t’’3 h’3 >8 v1 t’’2 h’’2 2 T1 t’’1 2 h’’1 h’2 >8 111111111111 000000000000 111111111111 000000000000 v 111111111111 000000000000 >8 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 h’1 111111111111 000000000000 C 111111111111 000000000000 111111111111 000000000000 w 111111111111 000000000000 111111111111 000000000000 h3 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 u 111111111111 000000000000 h1 111111111111 000000000000 h2 v3 CSE 254 - Metric Embeddings - Winter 2007 – p. 12/2 Red super nodes Deﬁnition. A super node of a graph G is a connected subgraph Let us deﬁne the following red super nodes: A(v1 ), A(v2 ), A(v3 ) A(v3 ) is the uni...
View Full Document

## This document was uploaded on 04/02/2014.

Ask a homework question - tutors are online