Captulo 18 anlisis de regresin lineal 14 coeficientes

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 880 t 2,170 40,276 Sig. ,031 ,000 El coeficiente correspondiente a la Constante es el origen de la recta de regresión (lo que hemos llamado B0): Y el coeficiente correspondiente a Salario inicial es la pendiente de la recta de regresión (lo que hemos llamado B1): B1 indica el cambio medio que corresponde a la variable dependiente (salario) por cada unidad de cambio de la variable independiente (salini). Según esto, la ecuación de regresión queda de la siguiente manera: Pronóstico en salario = 1928,206 + 1,909 salini A cada valor de salini le corresponde un pronóstico en salario basado en un incremento constante (1928,206) más 1,909 veces el valor de salini. Capítulo 18. Análisis de regresión lineal 14 Coeficientes de regresión estandarizados Los coeficientes Beta (coeficientes de regresión parcial estandarizados) son los coeficientes que definen la ecuación de regresión cuando ésta se obtiene tras estandarizar las variables originales, es decir, tras convertir las puntuaciones directas en típicas. Se obtiene de la siguiente manera: En el análisis de regresión simple, el coeficiente de regresión estandarizado correspondiente a la única variable independiente presente en la ecuación coincide exactamente con el coeficiente de correlación de Pearson. En regresión múltiple, según veremos, los coeficientes de regresión estandarizados permiten valorar la importancia relativa de cada variable independiente dentro de la ecuación. Capítulo 18. Análisis de regresión lineal 15 Pruebas de significación Finalmente, los estadísticos t y sus niveles críticos (Sig.) nos permiten contrastar las hipótesis nulas de que los coeficientes de regresión valen cero en la población. Estos estadísticos t se obtienen dividiendo los coeficientes de regresión B0 y B1 entre sus correspondientes errores típicos: siendo: Estos estadísticos t se distribuyen según el modelo de probabilidad t de Student con nn2 grados de libertad. Por tanto, pueden ser utilizados para decidir si un determinado coeficiente de regresión es significativamente distinto de cero y, en consecuencia, si la variable independiente está significativamente relacionada con la dependiente. Puesto que en regresión simple sólo trabajamos con una variable independiente, el resultado del estadístico t es equivalente al del estadístico F de la tabla del ANOVA (de hecho, t 2 = F). A partir de los resultados de la tabla 18.3, podemos llegar a las siguientes conclusiones: 1. El origen poblacional de la recta de regresión (β0) es significativamente distinto de cero (generalmente, contrastar la hipótesis “β0 = 0" carece de utilidad, pues no contiene información sobre la relación entre Xi e Yi). 2. La pendiente poblacional de la recta de regresión (el coeficiente de regresión β1 correspondiente a salini) es significativamente distinta de cero, lo cual nos permite concluir que entre salario y salini existe relación lineal significativa. Capítulo 18. Análisis de regresión lineal 16 Análisis de regresión lineal múltiple El procedimiento Regr...
View Full Document

Ask a homework question - tutors are online