El quinto supuesto no colinealidad no tiene captulo

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: independiente es sensible a los niveles de alguna otra variable independiente), etc. 2. Independencia. Los residuos son independientes entre sí, es decir, los residuos constituyen una variable aleatoria (recordemos que los residuos son las diferencias entre los valores observados y los pronosticados). Es frecuente encontrarse con residuos autocorrelacionados cuando se trabaja con series temporales. 3. Homocedasticidad. Para cada valor de la variable independiente (o combinación de valores de las variables independientes), la varianza de los residuos es constante. 4. Normalidad. Para cada valor de la variable independiente (o combinación de valores de las variables independientes), los residuos se distribuyen normalmente con media cero. 5. No-colinealidad. No existe relación lineal exacta entre ninguna de las variables independientes. El incumplimiento de este supuesto da origen a colinealidad o multicolinealidad. Sobre el cumplimiento del primer supuesto puede obtenerse información a partir de una inspección del diagrama de dispersión: si tenemos intención de utilizar el modelo de regresión lineal, lo razonable es que la relación entre la variable dependiente y las independientes sea de tipo lineal (veremos que existen gráficos parciales que permiten obtener una representación de la relación neta existente entre dos variables). El quinto supuesto, no-colinealidad, no tiene Capítulo 18. Análisis de regresión lineal 29 sentido en regresión simple, pues es imprescindible la presencia de más de una variable independiente. Veremos que existen diferentes formas de diagnosticar la presencia de colinealidad. El resto de los supuestos, independencia, homocedasticidad y normalidad, están estrechamente asociados al comportamiento de los residuos. Por tanto, un análisis cuidadoso de los residuos puede informarnos sobre el cumplimiento de los mismos. Capítulo 18. Análisis de regresión lineal 30 Análisis de los residuos Llamamos residuos a las diferencias entre los valores observados y los pronosticados: . Pueden obtenerse marcando la opción No tipificados dentro del recuadro Residuos en el subcuadro de diálogo Regresión lineal: Guardar nuevas variables (ver figura 18.12, más adelante). Los residuos son muy importantes en el análisis de regresión. En primer lugar, nos informan sobre el grado de exactitud de los pronósticos: cuanto más pequeño es el error típico de los residuos (ver tabla 18.1: error típico de la estimación), mejores son los pronósticos, o lo que es lo mismo, mejor se ajusta la recta de regresión a la nube de puntos. En segundo lugar, el análisis de las características de los casos con residuos grandes (sean positivos o negativos; es decir, grandes en valor absoluto) puede ayudarnos a detectar casos atípicos y, consecuentemente, a perfeccionar la ecuación de regresión a través de un estudio detallado de los mismos. La opción Diagnósticos por caso del cuadro de diálogo Regresión lineal: Estadísticos (ver figura 18.6.bis) ofrece un listado de to...
View Full Document

This document was uploaded on 03/30/2014 for the course COM 01 at University of Sevilla.

Ask a homework question - tutors are online