TEMA(4)

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ón parcial porque el valor concreto estimado para cada coeficiente se ajusta teniendo en cuenta la presencia del resto de variables independientes. Conviene, por tanto, interpretarlos con cautela. El signo del coeficiente de regresión parcial de una variable puede no ser el mismo que el del coeficiente de correlación simple entre esa variable y la dependiente. Esto es debido a los ajustes que se llevan a cabo para poder obtener la mejor ecuación posible. Aunque existen diferentes explicaciones para justificar el cambio de signo de un coeficiente de regresión, una de las que deben ser más seriamente consideradas es la que se refiere a la presencia de un alto grado de asociación entre algunas de las variables independientes (colinealidad). Trataremos esta cuestión más adelante. Capítulo 18. Análisis de regresión lineal 21 Coeficientes de regresión estandarizados Los coeficientes Beta están basados en las puntuaciones típicas y, por tanto, son directamente comparables entre sí. Indican la cantidad de cambio, en puntuaciones típicas, que se producirá en la variable dependiente por cada cambio de una unidad en la correspondiente variable independiente (manteniendo constantes el resto de variables independientes). Estos coeficientes proporcionan una pista muy útil sobre la importancia relativa de cada variable independiente en la ecuación de regresión. En general, una variable tiene tanto más peso (importancia) en la ecuación de regresión cuanto mayor (en valor absoluto) es su coeficiente de regresión estandarizado. Observando los coeficientes Beta de la tabla 18.6 vemos que la variable salini es la más importante; después, educ; por último, expprev. Lo ya dicho sobre la no independencia de los coeficientes de regresión parcial no estandarizados también vale aquí. Capítulo 18. Análisis de regresión lineal 22 Pruebas de significación Las pruebas t y sus niveles críticos (últimas dos columnas de la tabla 18.6: t y Sig.) sirven para contrastar la hipótesis nula de que un coeficiente de regresión vale cero en la población. Niveles críticos (Sig.) muy pequeños (generalmente menores que 0,05) indican que debemos rechazar esa hipótesis nula. Un coeficiente de cero indica ausencia de relación lineal, de modo que los coeficientes significativamente distintos de cero nos informan sobre qué variables son relevantes en la ecuación de regresión. Observando el nivel crítico asociado a cada prueba t (tabla 18.6), vemos que las tres variables utilizadas poseen coeficientes significativamente distintos de cero (en todas, Sig. = 0,000). Todas ellas, por tanto, contribuyen de forma significativa a explicar lo que ocurre con la variable dependiente. Capítulo 18. Análisis de regresión lineal 23 Información complementaria Además de la ecuación de regresión y de la calidad de su ajuste, un análisis de regresión no debe renunciar a la obtención de algunos estadísticos descriptivos elementales como la matriz de correlaciones,...
View Full Document

This document was uploaded on 03/30/2014 for the course COM 01 at University of Sevilla.

Ask a homework question - tutors are online