13_AS_5B_lec_annotated

# E any g h gh dt px t gh t dt o dt x t0 probability

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . any g = h gh dt px +t = µgh t dt + o (dt ) x+ t≥0 Probability of more than one transition in time dt is o (dt ) 26/60 Actuarial Statistics – Module 5: Parametric methods: Markov Model General Markov Model Kolmogorov Forward Equations: ∂ gh gj jh gh hj = tp t px µx +t −t px µx +t ∂t x j =h Proof For g = h by Markov assumption we have gh t +dt px = jh gj t px dt px +t gh +t px hh dt px +t j =h jh gj t px dt px +t = hj dt px +t gh +t px 1 − j =h j =h gj t px = µjh+t dt + o (dt ) x j =h 27/60 gh +t px 1 − µhj+t dt + o (dt ) x Actuarial Statistics – Module 5: Parametric methods: Markov Model General Markov Model Proof (continued) We then have ∂ gh tp ∂t x = = lim + gh t +dt px gh −t px dt dt →0 gj t px lim + dt →0 µjh+t dt + o (dt ) x j =h gh µhj+t dt + o (dt ) −t px /dt x gh +t px 1 − j =h gj t px = j =h j =h 28/60 µhj+t x j =h gj t px = gh µjh+t −t px x gh µjh+t −t px µhj+t x x Actuarial Statistics – Module 5: Parametric methods: Markov Model General Markov Model Given the transition intensities (estimated from data) we can determine transition probabilities from these equations (Kolmogorov’s Forward Equations) 29/60 Actuarial Statistics – Module 5: Parametric methods: Markov Model General Markov Model Example The following Markov model has been proposed for a study of unemployment beneﬁts (essentially an annuity payable while a young adult is unemployed for wh...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online