1 bi qx i 1 1030 actuarial statistics module 6

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (bi −ai qx +ai ) E [D ] = i =1 N [1−ai qx +ai − (bi −ai px +ai ) (1−bi qx +bi )] = i =1 N [(1 − ai ) qx − (bi −ai px +ai ) (1 − bi ) qx ] = i =1 N [(1 − ai ) qx − [1 − E [Di ]] (1 − bi ) qx ] = i =1 10/30 Actuarial Statistics – Module 6: Parametric models: Binomial and Poisson models Binomial model The actuarial estimate Now we substitute E [Di ] = di and E [D ] = d to get N (1 − ai ) qx − d= i =1 (1 − bi ) qx i ;Di =0 which gives a moment estimate qx of qx = d N i =1 (1 − ai ) − i ;Di =0 (1 This is what is called the “actuarial estimate” 11/30 − bi ) Actuarial Statistics – Module 6: Parametric models: Binomial and Poisson models Binomial model The actuarial estimate Initial exposed to risk We can rewrite the actuarial estimate as qx = dx Ex where the Initial exposed to risk Ex is defined as N N (1 − ai ) − Ex = i =1 (1 − bi ) = i ;Di =0 (1 − ai ) + i :Di =1 (bi − ai ) i ;Di =0 Note: deaths contribute the period of length (1 − ai ) from x + ai to x + 1 survivors contribute the period of length (bi − ai...
View Full Document

Ask a homework question - tutors are online