{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

4QA3 F12 Week 7 Lecture Notes

# 33 000 2500200 33 000 900q tc2 q 200 900

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: order. o  Incremental discount: the discount is applied only to the number of units above the breakpoint. ●  Unit price becomes relevant: TC = K 4QA3 F12 λ Q + h + cλ Q 2 A. Gandomi 27 C2=.28 C1=.29 Source: Nahmias (2009) 4QA3 F12 28 Source: Nahmias (2009) 4QA3 F12 29 QuanCty 1 - 49 50 - 89 90+ Price \$1,400=c0 1,100=c1 900=c2 K = \$2,500 h = 0.2c (i = 20%) λ = 200 All- units discount: Cost function " 1400Q for 0 ≤ Q < 50 \$ \$ C (Q ) = # 1100Q for 50 ≤ Q < 90 \$ \$ 900Q for 90 ≤ Q % 4QA3 F12 A. Gandomi 30 All- units discount: C(Q) curve C(Q) \$97,900 \$81,000 \$68,600 \$55,000 4QA3 F12 A. Gandomi 31 All- units discount: Quantities and costs Qj = 2K λ , j = 0,1, 2 ⇒ Q2 = 74.54, Q1 = 67.41, Q0 = 59.76 Ic j TC j (Q ) = λ c j + Kλ Q + Ic j Q 2 j = 0,1, 2. 2500(200) 67.41 + 0.2(1100) = \$234, 832.40 67.41 2 2500(200) 90 TC2 (90) = 200(900) + + 0.2(900) = \$193, 655.56 90 2 TC1 (67.41) = 200(1100) + Q* = 90 4QA3 F12 A. Gandomi 32 All- units discount: TC(Q) curve TC(Q) TC0(Q) TC1(Q) TC1(67.41)=\$234,832.40 TC2(Q) TC (90)=\$193,655.56 2 Q2=74.54 Q0=59.76 4QA3 F12 Q1=67.41 A. Gandomi Op9mal Q* 33 Incremental discount: Cost Function 1, 400Q C (Q ) = for 0 ≤ Q < 50 1, 400(50) + 1,100(Q − 50) = 15, 000 + 1,100Q for 50 ≤ Q < 90 70, 000 + 40(11, 00) + 900(Q − 90) for 90 ≤ Q = 33, 000 + 900Q " 1, 400 for 0 ≤ Q < 50 \$ C (Q ) \$ = # 1,100 + 15, 000 Q for 50 ≤ Q < 90 Q \$ \$ 900 + 33, 000 Q for 90 ≤ Q % 4QA3 F12 A. Gandomi 34 Incremental discount: C(Q)Function C(Q) \$114,000 \$70,000 4QA3 F1...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online