4QA3 F12 Week 10 Lecture Notes

Gandomi 35 r 335 200 140 440 300 200 starting

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: r = (335, 200, 140, 440, 300, 200) Starting in period 1: C(1) = 200 C(2) = [200 + (200)(.3)]/2 = 130 C(3) = [200 + (200)(.3) + (2)(140)(.3)]/3 = 114.67 C(4) = [344 + (440)(3)(.3)]/4 = 185 Stop. Starting in period 4: C(1) = 200 C(2) = [200 + (300)(.3)]/2 = 145 C(3) = [290 + (200)(2)(.3)]/3 = 136.67 Hence y1 = 335 + 200 + 140 = 675, y4 = 440 + 300 + 200 = 940 4QA3 F12 A. Gandomi 36 r = (335, 200, 140, 440, 300, 200) Starting in period 1: C (1) = 200/335= .597 Starting in period 5: C (1) = 200/300= .670 200 + (20 C (2) = 0)(.3) = .486 200 + (200 )(.3) (335 + 200 ) C (2 ) = = .520 (300 + 200 ) 200 + (200 )(.3) + (140 )(2 )(.3) C (3) = = .509 (335 + 200 + 140 ) Starting in period 3: C (1) = 200/140= 1.428 200 + ( 440 )(.3) = .572 (140 + 440 ) 200 + ( 440 )(.3) + (300 )(2 )(.3) C (3) = = .582 (140 + 440 + 300 ) Hence, y1 = 335+200 = 535, y3 = 140 + 440 = 580, y5 = 200+300 = 500 C (2 ) = 4QA3 F12 A. Gandomi 37 r = (335, 200, 140, 440, 300, 200) Starting in period 1: Periods Holding Cost 1 0 2 60 3 144 4 540 Starting in period 4: Periods Holding Cost 1 0 2 90 3 210 4QA3 F12 A. Gandomi 38 1. Lot- for- lot costs: 6 × 200 = $1200 2. EOQ costs: 3 × 200 + (.3)[264 + 64+ 523 + 83 + 382 + 182] = 600 + 449.40 = $1049.40 3. SM/PPB costs: 2 × 200+ (.3)[200 + 280 + 300 + 400] = 400 + 354 = $754 4. LUC costs: 3 × 200 + (.3)[200 + 440 + 200] = 600 + 252 = $852 ●  The Silver Meal and Part Period Balancing heuristics resulted in the same costs. 4QA3 F12 A. Gandomi 39 r = (335, 200, 140, 440, 300, 200) K = $200 h = 0.30 ●  The resulting cij matrix for this problem is: 2 3 4 5 6 7 1 200 260 344 740 1100 1400 2 200 242 506 776 1016 3 200 332 512 692 4 200 290 410 5 200 260 6 200 4QA3 F12 A. Gandomi 40 f7 = 0 f6 = c67 = 200 at j = 7 f5 = min(c5 j + f j ) = min( 400, 260 ) = 260 at j = 7 j >5 f4 = min(c4 j + f j ) = min(200 + 260, 290 + 200, 410 ) = 410 at j >4 j=7 f3 = min(c3 j + f j ) = min(200 + 410, 332 + 260, 512 + 200, 692 ) = 592 at j >3 j=5 f2 = min(c2 j + f j ) = j >2 min(200 + 592, 242 + 410, 506 + 260, 776 + 200, 1016 ) = 652 at j=4 f1 = min(c1 j + f j ) = j >1 min(200 + 652, 260 + 592, 344 + 410, 740 + 260, 1100 + 200, 1400 ) = 754 4QA3 F12 A. Gandomi at j=4 41 ●  Uncertainty. MRP...
View Full Document

This document was uploaded on 04/01/2014.

Ask a homework question - tutors are online