problemset3

# 8 problem set 3 6641 spring 2009 z ii h 4 4 4 ab ab

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: H= 4π (Iˆy ) × i � � bˆ 2 ix b x= 2 � − y iˆ dy y � � � (Iˆx ) × −xˆx − a ˆy dx i i 2i �� � � �� � �1 + 2 a2 a2 + x2 + x2 2 2 �� � � �� � �1 + 2 2 2 b b b x=− 2 + y2 + y2 z =0 z =0 2 2 b x=− 2 y= a 2 � �� �� �� � →→ − −− � |2 ˆr� r normalization for i |r r � � � � b y= a x= 2 � 2 (−Iˆy ) × − b ˆx − yˆy dy � (−Iˆx ) × −xˆx + a ˆy dx i i i i i i 2 2 � � �2 � �� �2 �1 + �� � � �� � �1 2 2 b b a2 a2 b + x2 + x2 + x2 + x2 y =− a x=− 2 2 2 2 2 y =− a 2 2 b x= 2 z =0 y =− a 2 z =0 ⎡ b x= 2 ⎤ y= a 2 a I (−ˆz )dx i b I (−ˆz )dy ⎥ i �� � �3 + 2 �� �2 �3 ⎦ a2 2 a2 2 2 y =− 2 b + x2 + x2 2 2 b �2 �a ⎤ ⎡ � �2 � �⎥ Iˆz ⎢ i by ax � � =− � �⎥ ⎣ � � �� � � 1 � + � �2 � � �2 �1 � ⎦ 4π 2 2 a2 a2 b b + x2 � + y2 � 2 2 2 2 = 1⎢ ⎣2 4π � � b x=−...
View Full Document

## This document was uploaded on 03/19/2014 for the course EECS 6.641 at MIT.

Ask a homework question - tutors are online