problemset1

82 1 0 0 0 1 textstyleform fontsize 14

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ) = 0 Hx (y = 0+ ) = −Kz (y = 0), Hx (y = d− ) = +Kz (y = d) c) ¯ ¯ �2 A = −µJ = −µJ0 sin axi¯ , z �2 Az = ¯ ¯ ¯ B = µH = � × A ∂ 2 Az ∂ 2 Az + = −µJ0 sin ax ∂ x2 ∂ y2 A z p = A z p ( x) ⇒ A z p ( x) = d2 Azp = −µJ0 sin ax dx2 µJ0 sin ax a2 � µJ0 + C sinh ay + D cosh ay Az (x, y ) = Azp (x) + Azh (x, y ) = sin ax a2 � � 1 ∂ Az a µJ0 Hy = − = − cos ax + C sinh ay + D cosh ay µ ∂x µ a2 � � a µJ0 µJ0 Hy (y = 0) = 0 = − cos ax +D ⇒D =− 2 2 µ a a � � a µJ0 Hy (y = d) = 0 = − cos ax + C sinh ad + D cosh ad µ a2 µJ0 a2 + D cosh ad µJ0 1 − cosh ad =− 2 · sinh ad a sinh ad � � J0 1 − cosh ad Hy = − 1− sinh ay − cosh ay cos ax a sinh ad C=− J0 cos ax · [sinh ad − sinh ay + sinh a(y − d)] a sinh ad 1 ∂ Az a = sin ax [C cosh ay + D sinh ay ] Hx = · µ ∂y µ � � 1 − cosh ad J0 + sinh ay = − sin ax cosh ay a sinh ad =− J0 sin ax · [cosh ay − cosh a(y − d)] a sinh ad J0 sin ax Kz (y = 0) =...
View Full Document

This document was uploaded on 03/19/2014 for the course EECS 6.642 at MIT.

Ask a homework question - tutors are online