SOLUTIONS to Problem Set I - EEE 2010

# 1 eq 354 eq 353 calculate z given eq 352

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .15K; Tr =T/Tc; Tr = 1.058 Pc = 48.72 bar; P =15 bar; Pr = P/Pc; Pr = 0.308 ω = 0.100 (i) From truncated virial equation correlation B = -156.7 cm3/mol; C = 9650 cm6/mol2; 3 V = 1791cm /mol Given: PV / RT =1 ; V = Find (V); Z = PV / RT; Z = 0.907 Ans. V = RT/P; V = 1625 cm3/mol; (ii) From generalized Pitzer correlation Equation B0 = -0.302; B1 = 3.517×10-3 V = ZRT/P; Z = 1 + (B0 + ωB1). Pr/Tr; Z = 0.912; (iii) From Redlich/Kwong EOS σ = 1; ε = 0; Ω = 0.08664; -0.5 Table 3.1; α (Tr) = Tr β (Tr, Pr) = (Table 3.1) Eq. (3.54) Eq. (3.53) Calculate Z; Given Eq. (3.52) Ψ = 0.42748 q (Tr) = V = 1634cm3/mol Ans. Guess Z = 0.9 1 , ; . Z = 0.906; , , . V = ZRT / P; , , . . V = 1622.7 cm3/mol Ans. (iv) From Soave/Redlich/Kwong Equation σ = 1; ε = 0; Ω = 0.08664; Ψ = 0.42748 (Table 3.1) / , 1 0.480 1.574 0.176 . 1 (Table 3.1) q (Tr) = Eq. (3.54); Calculate Z; Given Eq. (3.52) Guess Z=0.9 1 , ; β (Tr, Pr) = . Z = 0.907; , q (Tr) = V = ZRT / P; Eq. (3.54); Calculate Z; Given Eq. (3.52) , , . . V = 1624.8 cm3/mol Ans. Ψ = 0.457245 Table 3.1 / 0.26992 ; Table 3.1 . 1 Guess Z=0.9 1 , ; i. , . (v) The Peng/Robinson Equation 1 √2 ; Ω = 0.07779; σ = 1 +√2; , 1 0.37464 1.54226 Eq. (3.53) Z = 0.896; β (Tr, Pr) = . , . V = ZRT / P; Eq. (3.53) , , , . . V = 1605.5 cm3/mol Ans. Solution to problem 3.34 (SVNA) Tc =318.7K; Pc =37.6 bar; ω = 0.286 (i) T =348.15K; Tr =T/Tc; P =15 bar; Pr = P/Pc; From truncated virial equation correlation Tr = 1.092 Pr = 0.399 B = -194 cm3/mol; C = 15300 cm6/mol2; V = RT/P; V = 1930cm3/mol Given: PV / RT =1 ; V = Find (V); V = 1722 cm3/mol; Z = PV / RT; Z = 0.893 Ans. (ii) From generalized Pitzer correlation Equation B0 = -0.283; B1 = 0.02 Z = 1 + (B0 + ωB1). Pr/Tr; Z = 0.899 V = ZRT/P; (iii) From Redlich/Kwong EOS σ = 1; ε = 0; Ω = 0.08664; -0.5 Table 3.1; α (Tr) = Tr β (Tr, Pr) = (Table 3.1) Eq. (3.54) Eq. (3.53) Calculate Z; Given Eq. (3.52) Ψ = 0.42748 q (Tr) = V = 1734cm3/mol Ans. Guess Z = 0.9 1 , ; . Z = 0.888; , , . V = ZRT / P; , , . . V = 1714.1 cm3/mol Ans. (iv) From Soave/Redlich/Kwong Equation σ = 1; ε = 0; Ω = 0.08664; Ψ = 0.42748 (Table 3.1) / , 1 0.480 1.574 0.176 . 1 (Table 3.1) q (Tr) = Eq. (3.54); Calculate Z; Given Eq. (3.52) Guess Z=0.9 1 , ; β (Tr, Pr) = . Z = 0.895; , q (Tr) = V = ZRT / P; Eq. (3.54); Calculate Z; Given Eq. (3.52) , , . . V = 1726.9 cm3/mol Ans. Ψ = 0.45724 Table 3.1 / 0.26992 . 1 ; Table 3.1 Guess Z=0.9 1 , ; j. , . (v) The Peng/Robinson Equation σ = 1 +√2; 1 √2 ; Ω = 0.07779; , 1 0.37464 1.54226 Eq. (3.53) β (Tr, Pr) = . Z = 0.882; , . V = ZRT / P; Eq. (3.53) , , , . . V = 1701.5 cm3/mol Ans. Solution to Problem 3.35(SVNA) T =523.15K; (i) P =1800kPa From truncated virial equation correlation B = -152.5 cm3/mol; C = -5800 cm6/mol2; Given: PV / RT =1 ; V = Find (V); Z = PV / RT; Z = 0.931 Ans. V = RT/P; V = 2250 cm3/mol; (ii) From generalized Pitzer correlation Equation B0 = -0.51; B1 = -0.281 Z = 1 + (B0 + ωB1). Pr/Tr; Z = 0.939; V = ZRT/P; (iii) From Steam Tables...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online