SOLUTIONS to Problem Set I - EEE 2010

5 1227 1336 1489 1583 1704 1871 1532 1642 1791 2014

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .7cm3/mol, we take V1 = 30713.44cm3/mol Similarly for quadratic in V2 gives no real roots so we use next approach ; By iteration, starting with V1ig = 31023.7 cm3/mol, we get V1 = 30780 1 cm3/mol Similarly for V2, starting with V2ig = 564.07cm3/mol, we iterate to get V2 = 241.35 cm3/mol ; After integration and plugging in the values we get W = 13.29kJ/mol d. Solution to Problem 3.38 (SVNA) Units are cm3/mol a R/K Liq. 108.1 R/K Vap. 1499.2 Rackett 94.2 Pitzer 1537.8 b c d e f g h i j k l m n o p q r s t 114.5 122.7 133.6 148.9 158.3 170.4 187.1 153.2 164.2 179.1 201.4 61.7 64.1 66.9 70.3 64.4 67.4 70.8 74.8 1174.7 920.3 717.0 1516.2 1216.1 971.1 768.8 1330.3 1057.9 835.3 645.8 1252.5 1006.9 814.5 661.2 1318.7 1046.6 835.6 669.5 98.1 102.8 109.0 125.4 130.7 137.4 146.4 133.9 140.3 148.6 160.6 53.5 55.1 57.0 59.1 54.6 56.3 58.3 60.6 1228.7 990.4 805.0 1577.0 1296.8 1074.0 896.0 1405.7 1154.3 955.4 795.8 1276.9 1038.5 853.4 707.8 1319.0 1057.2 856.4 700.5 e. The derivation can be referred to from the text book. f. Solution to problem 3.30 (SVNA) B = -242.5cm3/mol; C = 25200cm6/mol2; T = 373.15K P1 = 1bar; P2 = 55bar B’= B/RT; B’ = -7817×10-3 bar-1 C’ = (C-B2) / R2T2; C’ = -3.492 ×10-5 bar-2 Part (a): Solve virial equation for initial V Guess: V1 = RT/P1 Given (P1V1 / RT) =1 ; V1 = Find (V1); V1 = 30780 cm3/mol Solve virial equation for final V Guess V2 = RT/P2 Given (P2V2 / RT) =1 ; V2 = Find (V2); V2 = 241.33 cm3/mol Eliminate P from Eq. (1.3) by the virial equation 1 ; Work = 12.62 kJ/mol Ans. Part (b) Eliminate dV from Eqn. 1.3 by the virial equation in P: ; W = 12.597kJ/mol ; g. Solution to problem 3.32 (SVNA) Tc =282.3K; Pc =50.4bar; ω = 0.087 T =298.15K; Tr =T/Tc; P =12 bar; Pr = P/Pc; Tr = 1.056 Pr = 0.238 (i) From truncated virial equation correlation B = -140 cm3/mol; C = 7200 cm6/mol2; V = RT/P; V = 2066cm3/mol Given: PV / RT =1 ; V = Find (V); V = 1919 cm3/mol; Z = PV / RT; Z = 0.929 Ans. (ii) From generalized Pitzer correlation Equation B0 = -0.304; B1 = 2.262×10-3 V = ZRT/P; Z = 1 + (B0 + ωB1). Pr/Tr; Z = 0.932; (iii) From Redlich/Kwong EOS σ = 1; ε = 0; Ω = 0.08664; -0.5 Table 3.1; α (Tr) = Tr β (Tr, Pr) = (Table 3.1) Eq. (3.54) Eq. (3.53) Calculate Z; Given Eq. (3.52) Ψ = 0.42748 q (Tr) = V = 1924cm3/mol Ans. Guess Z = 0.9 1 , ; . Z = 0.928; , , . V = ZRT / P; , , . . V = 1916.5 cm3/mol Ans. (iv) From Soave/Redlich/Kwong Equation σ = 1; ε = 0; Ω = 0.08664; Ψ = 0.42748 (Table 3.1) / , 1 0.480 1.574 0.176 . 1 (Table 3.1) q (Tr) = Eq. (3.54); Calculate Z; Given Eq. (3.52) Guess Z=0.9 1 , ; β (Tr, Pr) = . Z = 0.928; , q (Tr) = V = ZRT / P; Eq. (3.54); Calculate Z; Given Eq. (3.52) , . (v) The Peng/Robinson Equation 1 √2 ; Ω = 0.07779; σ = 1 +√2; , 1 0.37464 1.54226 Eq. (3.53) , , . . V = 1918 cm3/mol Ans. Ψ = 0.457245 Table 3.1 / 0.26992 ; Table 3.1 . 1 Guess Z=0.9 1 , ; Z = 0.92; β (Tr, Pr) = . , . V = ZRT / P; Eq. (3.53) , , , . . V = 1900.6 cm3/mol Ans. h. Solution to Problem 3.33 (SVNA) (Type out the problem) Tc =305.3K; T = 323...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online